[Objectives]The paper was to explore the effects of different doses of water-retaining agent on the growth and development indicators,yield and quality of soybean plants subjected to drought stress.[Methods]The effect...[Objectives]The paper was to explore the effects of different doses of water-retaining agent on the growth and development indicators,yield and quality of soybean plants subjected to drought stress.[Methods]The effects of drought stress(MDS)and drought stress with low(MDS-L),medium(MDS-M)and high doses(MDS-H)of the water-retaining agent on the growth and development indicators,root activity,MDA content,antioxidant enzyme activity,yield and quality of soybean were studied by field plot test,with the normal water supply serving as the control(CK).[Results]In response to drought stress,the plant height,stem diameter,and yield of soybean exhibited a notable decline.Additionally,the contents of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a significant reduction.Conversely,the root activity and antioxidant enzyme activity exhibited a noticeable decline,while the MDA content exhibited an increase.The application of varying doses of the water-retaining agent was found to significantly enhance soybean growth,stimulate root activity,and elevate antioxidant enzyme activity,while concurrently reducing MDA content.The observed effects were found to be dose-dependent,with the greatest effects observed at the highest dose.In comparison to MDS,the yields of soybean in the MDS-L,MDS-M,and MDS-H treatments exhibited a 18.38%,25.58%,and 46.26%increase,respectively.Additionally,the content of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a notable enhancement.[Conclusions]The application of the water-retaining agent has been demonstrated to significantly promote the growth of soybean plants under conditions of drought stress,resulting in an improvement in both the yield and the quality of the soybean crop.The recommended dosage of the water-retaining agent is 3.3 kg/667 m 2.展开更多
Kenaf (Hibiscus cannabinus L) consists of various beneficial components like stalks, seeds, leaves, fibers, oils, proteins, allelopathic chemicals, and fiber strands, among other things. Despite the numerous uses of t...Kenaf (Hibiscus cannabinus L) consists of various beneficial components like stalks, seeds, leaves, fibers, oils, proteins, allelopathic chemicals, and fiber strands, among other things. Despite the numerous uses of the crop, there is little or no information on optimum agronomic practices such as planting date and N fertilization of the crop in the Upper East Region (UER) of Ghana where the crop is widely cultivated by smallholder farmers. Field experiments were therefore carried out in 2020 and repeated during the 2021 cropping season in the study area. The objective of the study was to determine appropriate planting date and N fertilization for increased kenaf productivity. In each year, the treatments consisted of 3 × 5 factorial combinations of three planting dates (1<sup>st</sup> July, 7<sup>th</sup> July and 14<sup>th</sup> July) and five levels of N (0, 20, 40, 60 and 80 kg/ha) replicated three times. The design of the experiment was a split-plot with the N fertilizer as the main plot and the planting date assigned to sub plot. The results showed that, planting kenaf in early (1<sup>st</sup>) July or N fertilization at the rate of 60 kg/ha increased plant density, stem height, stem diameter, dry bast and core yields in both cropping seasons.展开更多
In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experime...In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experiments were carried out with different apple trees. Three irrigation levels were applied: 85%-100%(H1), 70%-85%(H2) and 55%-70%(H3) of the field water capacity, respectively, and three nitrogen levels were N1(360 g/plant), N2(240 g/plant) and N3(120 g/plant). The results show that irrigation and nitrogen application has significant effects on new shoot length, flowering and fruit setting, fruit diameter, fruit volume and yield of apple. The leaf area index(LAI) shows a single trend during the growth period, and the peak value appears in the middle of July. Under the same irrigation level, compared with N3, N1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 17.91%, 28.31%, 18.75%, 11.38%, 10.13%, 36.60%, 20.92% and 5.19%, respectively, while N2 also increases by 12.40%, 15.63%, 4.86%, 5.40%, 5.11%, 17.01%, 26.17% and 13.74%, respectively. The rate of flowering and fruit setting decreases with the increase of nitrogen application. Under the same nitrogen level, compared with H3, H1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 34.65%, 15.49%, 30.77%, 3.93%, 4.95%, 12.86%, 33.15% and 28.62%, respectively, while H2 also increases by 33.67%, 16.42%, 67.52%, 3.81%, 2.97%, 11.57%, 43.45% and 27.26%, respectively. The rate of flowering and fruit setting decreases first and then increases with the increase of irrigation amount. Compared with H3N3, the yield of other treatments increases by 2.69%-52.20%, while H2N1 treatment has the highest yield(26 852.55 kg/ha). Considering from the point of view of promoting growth and increasing yield, the best water and nitrogen combination mode of mountain apple in northern Shaanxi is medium water deficit irrigation and high nitrogen(H2N1) treatment. The results from this study can provide a theoretical basis for apple water and nitrogen management in mountainous areas of northern Shaanxi.展开更多
Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study wa...Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes.展开更多
Understanding physiological responses in saline agriculture may facilitate wheat breeding programs.Based on a screening test,the Ningmai-14(NM-14)and Yangmai-23(YM-23)wheat cultivars were selected for further experime...Understanding physiological responses in saline agriculture may facilitate wheat breeding programs.Based on a screening test,the Ningmai-14(NM-14)and Yangmai-23(YM-23)wheat cultivars were selected for further experiments to understand the underlying salinity tolerance mechanism.This study investigated the effects of five salinity levels such as Control(CK)=0(without NaCl stress),S1=0.20%,S2=0.25%,S3=0.30%and S4=0.35%of NaCl concentrations of soil on wheat plants.The results showed that increased salinity concentration reduced the growth and yield of wheat cultivars(NM-14 and YM-23).However,YM-23(12.7%)yielded more than NM-14 at maximum salinity stress.The higher salinity(S4)increased the concentration of Na^(+)(4.3 to 5.8-fold)and P contents(2.5 to 2.2-fold),while reducing the average concentrations of K^(+),Cu,and K^(+)/Na^(+)ratio.The higher salinity(S4)reduced the spikelet length by 21.35%(followed by grain spike−1),and the starch content by 18.81%.In the YM-23 cultivar,higher salinity increased superoxide dismutase(SOD),total antioxidant capacity(TAC),and amylase.Compared to NM-14,induced expression of TaYUC2,6,and TaGA13ox,20ox genes were recorded in YM-23.Similarly,in YM-23 the stress-specific genes such as TaHSP70,90 were enhanced whereas,TaSOS1,2 were suppressed.Overall,our study revealed that salt tolerant cultivars modulate hormonal and antioxidant activities,thus maintaining high growth.展开更多
[Objectives]The paper was to provide a reference for screening dwarfing rootstock suitable for main spur-type Fuji cultivars in central and southern Hebei Province.[Methods]With spur-type Fuji‘Tianhong 2’as the mate...[Objectives]The paper was to provide a reference for screening dwarfing rootstock suitable for main spur-type Fuji cultivars in central and southern Hebei Province.[Methods]With spur-type Fuji‘Tianhong 2’as the material,the vegetative growth,yield and fruit quality of 8 different rootstock-scion combinations were compared.[Results]‘Tianhong 2’/SH6 as self-rooted rootstock had large average single fruit weight(256.33 g),large number of fruits per plant(188.68),the highest yield[(3250.08±23.42)kg/667 m ^(2)]and the highest colored area(93.5%),and the soluble solid content reached the requirement of high quality fruit(15.78%).[Conclusions]In central and southern Hebei Province,‘Tianhong 2’grafted on SH6 self-rooted rootstock has moderate growth,high yield and good fruit quality,so it can be considered as the preferred rootstock-scion combination in the local area.展开更多
Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective see...Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective seed priming method that would ensure the potential yield of wheat in Bangladesh,two experiments were carried out from December 2021 to March 2022 at the Department of Agronomy,Bangladesh Agricultural University.Two wheat varieties namely BARI Gom-28 and BWMRI Gom-1 were subjected to a range of priming chemicals in both lab and pot tests.These compounds included the following:control(no priming),hydropriming(distilled water),10000 ppm KNO_(3),15000 ppm KNO_(3),40000 ppm Mannitol,60000 ppm Mannitol,10000 ppm NaCl,20000 ppm NaCl,100 ppm PEG,150 ppm PEG,500 ppm NaOCl,1000 ppm NaOCl,10000 ppm CaCl_(2),20000 ppm CaCl_(2),10000 ppm KCl and 20000 ppm KCl.A complete randomized design(CRD)with three repli-cations was used to set up the experiments.The results showed that BARI Gom-28 and BWMRI Gom-1 responded best to KCl priming in terms of rapid seed germination and strong seedling development.On the other hand,the best priming agents for plant growth and productivity turned out to be CaCl_(2) and KCL.The results of this study support the possibility of using seed priming as a technique to improve wheat plant development and output by raising seed emergence and survival rates.展开更多
Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitr...Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas.展开更多
The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This regio...The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.展开更多
Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projec...Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO.展开更多
[Objective] The aim was to study the effect of apple-tea intercrop on the growth and yield of tea shoot.[Method] Comparing tea leaves in apple-tea intercrop garden with neighboring tea leaves,the change of tea growth ...[Objective] The aim was to study the effect of apple-tea intercrop on the growth and yield of tea shoot.[Method] Comparing tea leaves in apple-tea intercrop garden with neighboring tea leaves,the change of tea growth and fresh leaves yield in annual growth cycle was observed.[Result] There was obvious difference of tea shoot growth in intercropping and control group in various seasons.In spring,summer and autumn,intercropping tea had lower canopy temperature and higher canopy humidity compared with control tea,while there was no obvious difference of canopy temperature and humidity in intercropping and control tea in winter;the respiratory intensity of intercropping tea was very significantly lower than that of control tea,and its net photosynthetic intensity was very significantly higher than that of control tea,while there was no obvious change law in photosynthetic rate;the effect of intercrop on budding density of tea shoot wasn't obvious,but it promoted early germination of tea bud,increased leaf weight and improved fresh leaf yield.[Conclusion] Our study could provide theoretical foundation for the rational allocation of intercrop in compound ecological tea garden and the production of non-polluted tea.展开更多
[Objective]The paper was to study the effect of tiller-inhibitor on the growth and yield formation of super early rice Jinyou 458.[Method] Two treatments including spraying tiller-inhibitor(TI) and spraying water(C...[Objective]The paper was to study the effect of tiller-inhibitor on the growth and yield formation of super early rice Jinyou 458.[Method] Two treatments including spraying tiller-inhibitor(TI) and spraying water(CK) at the SN-n stage were set in the test,the effect of tiller-inhibitor on yield and its components,leaf and plant morphology,field microclimate at booting stage and quality characteristics of rice population were studied.[Result] Spraying tiller-inhibitor could effectively reduce the occurrence of invalid and inefficient tillers,increase the proportion of high effective tillers(tiller with 4 or more leaves) in tiller composition at the maximal tiller stage.The panicle length,spikelets per panicle,spikelets density,number of secondary branches and the secondary spikelets,seed setting rate of rice plant sprayed with tiller-inhibitor were significantly higher than CK.Meanwhile,spraying tiller-inhibitor could increase plant height,biomass weight and leaf area index of rice population during middle and late stages of rice growing,improve the leaf temperature of top three leaves and the light transmittance of rice population at the booting stage,increase the leaf SPAD value,thus enhance photosynthetic capacity of rice plants.It also showed the characteristics of elongating the internode of rice plant and decreasing the stem thickness,etc.[Conclusion] The panicle-bearing rate of stems and tillers,effective panicles,spikelets per panicle,seed setting rate and 1 000-grain weight had coordinately increased after spraying tiller-inhibitor,thus increased the yield.展开更多
[Objective] This study aimed to investigate the effect of different boric fer- tilizer on the growth, yield and quality of strawberry. [Method] With a strawberry cultivar Hongyan as the test material, water, borax and...[Objective] This study aimed to investigate the effect of different boric fer- tilizer on the growth, yield and quality of strawberry. [Method] With a strawberry cultivar Hongyan as the test material, water, borax and foliar disodium octoborate tetrahydrate was respectively sprayed to the leaves of strawberry four times from the squaring stage on. At the initial flowering stage and mature stage, the plant height, stem diameter, leaf area and petiole length of strawberry were measured; at the harvest time, the single fruit weight of strawberry was measured; and at the mature stage, the VC, sugar and organic acids contents in the strawberry fruit were determined. [Result] Compared with the control group, the spraying of foliar disodi- um octoborate tetrahydrate promoted the growth and significantly increased the plant height and leaf area of strawberry. However, no significant difference was found in root shoot ratio of strawberry between foliar disodium octoborate tetrahydrate treat- ment and the control group. Spraying of boric fertilizers significantly increased the single fruit weight and yield of strawberry. Compare with the control group, the spraying of foliar disodium octoborate tetrahydrate and borax increased the single fruit weight of strawberry by 20.14% and 4.86% respectively, and increased the yield of strawberry by 17.28% and 4.02% respectively. Compared with borax treat- ment and the control group, spraying of foliar disodium octoborate tetrahydrate im- proved the quality, i.e., increased the VC content, soluble solids content and sugar- acid ratio in strawberry fruit. The B content in leaf of strawberry was increased after foliar B fertilization. Among the three groups, the B content in leaf of strawberry ranked as disodium octoborate tetrahydrate treatment's 〉 borax treatment's 〉 con- trol's. [Conclusion] Spraying foliar disodium octoborate tetrahydrate can promote the growth, yield and quality of strawberry.展开更多
ObjectiveThis study aimed to investigate the effect of fulvic acid on the growth and yield components of direct seeding rice (Nanjing 44). MethodThe rice seeds were soaked in 0 (water as a control), 1, 2, 4 and 6 ...ObjectiveThis study aimed to investigate the effect of fulvic acid on the growth and yield components of direct seeding rice (Nanjing 44). MethodThe rice seeds were soaked in 0 (water as a control), 1, 2, 4 and 6 g/L fulvic acid (FA) before sowed. Then, the rice morphological indices, leaf chlorophyll content, photosynthesis parameters, root activity and chlorophyll fluorescence parameters were measured in the following field studies. ResultCompared with the control, the leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance and dry matter weight and some fluorescence parameters such as the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), excitation energy capture efficiency of opened PSII reaction center (Fv’/Fm’) and efficiency of the open reaction centre (ΦPS II) increased by different levels at both jointing stage and heading stage of direct seeding rice, whose seeds were soaked by FA with different concentrations. High FA concentration (4-6 g/L) significantly increased the cultivated rice leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate and dry matter weight by 10.32% -22.88% , 5.88% -13.11% , 12.16% -26.84% , 11.43% -88.46% , 10.63% -21.63% , 18.49% -19.68% , respectively, thereby improving the physiological function and light energy transform efficiency of rice at the growth stage. With FA concentration increasing, the yield, effective panicles, grain number per panicle and seed setting rate were increased significantly compared with the control by 17.52%-18.71%, 3.46%-3.85%, 6.30%- 6.51% and 7.82%-8.69% respectively. ConclusionSoaking rice seed with FA could be considered as an effective way to improve the rice competitiveness at early growth stage.展开更多
[Objective] The aim was to study the damage and the mechanism of combined pollution of Pb and Cd on rice growth,yield and quality of rice. [Method]Effects of combined pollution of Pb and Cd on the growth and yield of ...[Objective] The aim was to study the damage and the mechanism of combined pollution of Pb and Cd on rice growth,yield and quality of rice. [Method]Effects of combined pollution of Pb and Cd on the growth and yield of rice were studied by pot experiment with cultivating rice. [Result] Pb and Cd could promote rice growth at low concentration while inhibit plant height at high concentration; Pb and Cd stress reduced the number of rice tillers significantly,with the increasing of stress concentration,the decrease amplitude of the number of tillers was greater; the panicle per pot,seed setting rate,1 000-grain weight and yield of rice were reduced significantly by Pb and Cd stress,the grain number per panicle decreased significantly under low concentration of Pb and Cd but increased significantly under high concentration; the brown rice rate and milled rice rate increased significantly under low concentration of Pb and Cd while at high concentration of Pb and Cd,the both two reduced significantly,the head milled rice rate reduced significantly with the decreasing of concentration; The Pb and Cd content of grains were significantly positively related to the concentrations of Pb and Cd content in soil,it had excessively exceeded hygienic standard when the concentrations of Pb and Cd in soil were medium-high and the unqualified rate reached 333% and 122%. [Conclusion]The study had provided basis for the establishment of rice cultivation system in pollution areas.展开更多
[Objective] Effects of controlled release N fertilizers on wheat growth and yield were studied to provide reference for the application of controlled release fertilizers on wheat. [Method] A field experiment was condu...[Objective] Effects of controlled release N fertilizers on wheat growth and yield were studied to provide reference for the application of controlled release fertilizers on wheat. [Method] A field experiment was conducted to study the effects of different types and levels of controlled release N fertilizers on the growth and yield of wheat. In this experiment, a treatment with the application of common urea and potassium chloride(common fertilizer) was established, and treatments with controlled release N fertilizers A and B with different coating materials were also established. [Result] The results showed that under the condition of the same P and K levels, controlled release N fertilizer A at a proportion of 100%, controlled release N fertilizer A at a proportion of 80% and controlled release N fertilizer B at a proportion of 80% could promote wheat growth, optimize yield components, and increase the amount of dry matter accumulation and grain yield. [Conclusion] One-time application of controlled release N fertilizer could be adopted in wheat production to achieve the purposes of saving fertilizer, saving labor and increasing efficiency.展开更多
[Objective] This study aimed to explore an optimum application amount of nitrogen for cotton cultivation. [Method] In this study, a field experiment was conducted to investigate the effects of nitrogen application amo...[Objective] This study aimed to explore an optimum application amount of nitrogen for cotton cultivation. [Method] In this study, a field experiment was conducted to investigate the effects of nitrogen application amount on the growth characteristics, boll development and lint yield of high quality cotton line FZ-1. [Result] Compared with the nitrogen level of 225 kg/hm2, the lint yield had increased by 28.46% and 18.73%, respectively, with the nitrogen application amount of 300 and 375 kg/hm2. When the nitrogen application amount had increased from 225 to 300 kg/hm2, boll number per plant, boll weight and lint yield had significantly increased. At the nitrogen level of 375 kg/hm2, however, the effects of increasing lint yield were significantly less than that at the nitrogen level of 300 kg/hm2. Compared with the nitrogen levels of 225 and 375, 300 kg/hm2 of nitrogen was the optimum application amount to improve the plant height, daily increment of plant height, number of fruit branches, number ratio of nodes to fruit branches, boll volume and seed cotton weight per boll. [Conclusion] The rational management of nitrogen is the most effective way to promote the growth and development of cotton plants, ensure high yielding ability and minimize the environmental pollution caused by the overuse of nitrogen. This study had provided a sound nitrogen application strategy for the cultivation of this high-quality cotton line in the field plantation.展开更多
The research explored effects of cultivation methods on growth, yield and quality of cassava. The results showed that the mulching treatment by direct seed- ing, the mulching treatment by transplanting, and the expose...The research explored effects of cultivation methods on growth, yield and quality of cassava. The results showed that the mulching treatment by direct seed- ing, the mulching treatment by transplanting, and the exposed treatment by trans- planting performed excellently in bringing seedling stage forward, improving germina- tion rate, yield and quality. For example, seedling emergence stages were 36, 31 and 31 d earlier; germination rates improved by 19.24%, 14.29% and 14.29%; yields grew by 41.98%, 26.72% and 11.45%; starch contents increased by 3.50%, 2.10% and 1.40%, respectively. Therefore, cassava in the mulching treatment by direct seeding is characterized by earlier seedling emergence stage, high germination rate, high yield and quality.展开更多
The effects of farming method, rice variety and seedling-raising method were studied on the population growth quality and grain yield of the mechanized transplanting rice by way of three-factor split plot design. The ...The effects of farming method, rice variety and seedling-raising method were studied on the population growth quality and grain yield of the mechanized transplanting rice by way of three-factor split plot design. The results showed that the no-tillage mechanical transplanting treatment was poorer than the conventional mechanical transplanting treatment in transplanting quality in general, but the former was similar to the latter in population growth quality. In regard to grain yield, the no-tillage mechanical transplanting treatment was lower than the conventional me- chanical transplanting treatment. Raising both pot-mat seedling and plastic-tray seedling did not make much difference in population growth and grain yield of mechanized transplanting rice, so both of the seedling-raising methods can be adopted according to practical conditions.展开更多
The research reviewed use effects of Yuhuangjin, Xishibao, Zhuangfengling and Jianzhuangsu on Jinhai No. 5. The results showed plant height and ear height declined in varying degrees, as well as empty-stalk rate and l...The research reviewed use effects of Yuhuangjin, Xishibao, Zhuangfengling and Jianzhuangsu on Jinhai No. 5. The results showed plant height and ear height declined in varying degrees, as well as empty-stalk rate and lodging rate, with the plant growth regulators applied. Economic characters all improved, including ear length and diameter, barren-tip length and hundred-seed weight, and corn yield went up significantly on average. For example, the increased yield can be as high as 17.43% when Yuhuangjin was applied at 30 ml/hm^2.展开更多
基金Supported by Science and Technology Program of the Fourth Division Kekedala City(2023GG11).
文摘[Objectives]The paper was to explore the effects of different doses of water-retaining agent on the growth and development indicators,yield and quality of soybean plants subjected to drought stress.[Methods]The effects of drought stress(MDS)and drought stress with low(MDS-L),medium(MDS-M)and high doses(MDS-H)of the water-retaining agent on the growth and development indicators,root activity,MDA content,antioxidant enzyme activity,yield and quality of soybean were studied by field plot test,with the normal water supply serving as the control(CK).[Results]In response to drought stress,the plant height,stem diameter,and yield of soybean exhibited a notable decline.Additionally,the contents of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a significant reduction.Conversely,the root activity and antioxidant enzyme activity exhibited a noticeable decline,while the MDA content exhibited an increase.The application of varying doses of the water-retaining agent was found to significantly enhance soybean growth,stimulate root activity,and elevate antioxidant enzyme activity,while concurrently reducing MDA content.The observed effects were found to be dose-dependent,with the greatest effects observed at the highest dose.In comparison to MDS,the yields of soybean in the MDS-L,MDS-M,and MDS-H treatments exhibited a 18.38%,25.58%,and 46.26%increase,respectively.Additionally,the content of protein,fat,linoleic acid,and linolenic acid in seeds demonstrated a notable enhancement.[Conclusions]The application of the water-retaining agent has been demonstrated to significantly promote the growth of soybean plants under conditions of drought stress,resulting in an improvement in both the yield and the quality of the soybean crop.The recommended dosage of the water-retaining agent is 3.3 kg/667 m 2.
文摘Kenaf (Hibiscus cannabinus L) consists of various beneficial components like stalks, seeds, leaves, fibers, oils, proteins, allelopathic chemicals, and fiber strands, among other things. Despite the numerous uses of the crop, there is little or no information on optimum agronomic practices such as planting date and N fertilization of the crop in the Upper East Region (UER) of Ghana where the crop is widely cultivated by smallholder farmers. Field experiments were therefore carried out in 2020 and repeated during the 2021 cropping season in the study area. The objective of the study was to determine appropriate planting date and N fertilization for increased kenaf productivity. In each year, the treatments consisted of 3 × 5 factorial combinations of three planting dates (1<sup>st</sup> July, 7<sup>th</sup> July and 14<sup>th</sup> July) and five levels of N (0, 20, 40, 60 and 80 kg/ha) replicated three times. The design of the experiment was a split-plot with the N fertilizer as the main plot and the planting date assigned to sub plot. The results showed that, planting kenaf in early (1<sup>st</sup>) July or N fertilization at the rate of 60 kg/ha increased plant density, stem height, stem diameter, dry bast and core yields in both cropping seasons.
基金National Natural Science Foundation of China(52079105,51779205)。
文摘In order to explore the effects of different irrigation and nitrogen application on growth cha-racteristics and yield of apple trees under surge-root irrigation in mountainous areas of northern Shaanxi, field experiments were carried out with different apple trees. Three irrigation levels were applied: 85%-100%(H1), 70%-85%(H2) and 55%-70%(H3) of the field water capacity, respectively, and three nitrogen levels were N1(360 g/plant), N2(240 g/plant) and N3(120 g/plant). The results show that irrigation and nitrogen application has significant effects on new shoot length, flowering and fruit setting, fruit diameter, fruit volume and yield of apple. The leaf area index(LAI) shows a single trend during the growth period, and the peak value appears in the middle of July. Under the same irrigation level, compared with N3, N1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 17.91%, 28.31%, 18.75%, 11.38%, 10.13%, 36.60%, 20.92% and 5.19%, respectively, while N2 also increases by 12.40%, 15.63%, 4.86%, 5.40%, 5.11%, 17.01%, 26.17% and 13.74%, respectively. The rate of flowering and fruit setting decreases with the increase of nitrogen application. Under the same nitrogen level, compared with H3, H1 increases in yield, new shoot length, LAI, transverse diameter, longitudinal diameter, volume, flowering and fruit setting by 34.65%, 15.49%, 30.77%, 3.93%, 4.95%, 12.86%, 33.15% and 28.62%, respectively, while H2 also increases by 33.67%, 16.42%, 67.52%, 3.81%, 2.97%, 11.57%, 43.45% and 27.26%, respectively. The rate of flowering and fruit setting decreases first and then increases with the increase of irrigation amount. Compared with H3N3, the yield of other treatments increases by 2.69%-52.20%, while H2N1 treatment has the highest yield(26 852.55 kg/ha). Considering from the point of view of promoting growth and increasing yield, the best water and nitrogen combination mode of mountain apple in northern Shaanxi is medium water deficit irrigation and high nitrogen(H2N1) treatment. The results from this study can provide a theoretical basis for apple water and nitrogen management in mountainous areas of northern Shaanxi.
基金supported by the National Key R&D Program of China(2018YFD1000902)the Natural Science Foundation of Shandong Province(ZR2021QC163).
文摘Continuous cropping(CC)obstacle is a major threat in legume crops production;however,the underlying mechanisms concerning the roles allelochemicals play in CC obstacle are poorly understood.The current 2-year study was conducted to investigate the effects of different kinds and concentrations of allelochemicals,p-hydroxybenzoic acid(H),cinnamic acid(C),phthalic acid(P),and their mixtures(M)on peanut root growth and productivity in response to CC obstacle.Treatment with H,C,P,and M significantly decreased the plant height,dry weight of the leaves and stems,number of branches,and length of the lateral stem compared with control.Exogenous application of H,C,P,and M inhibited the peanut root growth as indicated by the decreased root morphological characters.The allelochemicals also induced the cell membrane oxidation even though the antioxidant enzymes activities were significantly increased in peanut roots.Meanwhile,treatment with H,C,P,and M reduced the contents of total soluble sugar and total soluble protein.Analysis of ATPase activity,nitrate reductase activity,and root system activity revealed that the inhibition effects of allelochemicals on peanut roots might be due to the decrease in activities of ATPase and NR,and the inhibition of root system.Consequently,allelochemicals significantly decreased the pod yield of peanut compared with control.Our results demonstrate that allelochemicals play a dominant role in CC obstacle-induced peanut growth inhibition and yield reduction through damaging the root antioxidant system,unbalancing the osmolytes accumulation,and decreasing the activities of root-related enzymes.
基金the National Natural Science Foundation of China(32101817)Jiangsu Agriculture Science and this work was funded by the National Natural Science Foundation of China(32101817)+3 种基金Jiangsu Agriculture Science and Technology Innovation Fund(CX(21)3111)the Natural Science Foundation of the Jiangsu Higher Education Institutions(21KJD210001)the Scientific and Technological Innovation Fund of Carbon Emissions Peak and Neutrality of Jiangsu Provincial Department of Science and Technology(BE2022304)the project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)for their financial support.
文摘Understanding physiological responses in saline agriculture may facilitate wheat breeding programs.Based on a screening test,the Ningmai-14(NM-14)and Yangmai-23(YM-23)wheat cultivars were selected for further experiments to understand the underlying salinity tolerance mechanism.This study investigated the effects of five salinity levels such as Control(CK)=0(without NaCl stress),S1=0.20%,S2=0.25%,S3=0.30%and S4=0.35%of NaCl concentrations of soil on wheat plants.The results showed that increased salinity concentration reduced the growth and yield of wheat cultivars(NM-14 and YM-23).However,YM-23(12.7%)yielded more than NM-14 at maximum salinity stress.The higher salinity(S4)increased the concentration of Na^(+)(4.3 to 5.8-fold)and P contents(2.5 to 2.2-fold),while reducing the average concentrations of K^(+),Cu,and K^(+)/Na^(+)ratio.The higher salinity(S4)reduced the spikelet length by 21.35%(followed by grain spike−1),and the starch content by 18.81%.In the YM-23 cultivar,higher salinity increased superoxide dismutase(SOD),total antioxidant capacity(TAC),and amylase.Compared to NM-14,induced expression of TaYUC2,6,and TaGA13ox,20ox genes were recorded in YM-23.Similarly,in YM-23 the stress-specific genes such as TaHSP70,90 were enhanced whereas,TaSOS1,2 were suppressed.Overall,our study revealed that salt tolerant cultivars modulate hormonal and antioxidant activities,thus maintaining high growth.
基金Key Research and Development Program of Hebei Province(19226817D)China Apple Research System(CARS-27)+1 种基金Key Technology R&D Program of Hebei Province(16226312D-2)Basic Research Fund Youth Project of Hebei Academy of Agriculture and Forestry Sciences(2021100102).
文摘[Objectives]The paper was to provide a reference for screening dwarfing rootstock suitable for main spur-type Fuji cultivars in central and southern Hebei Province.[Methods]With spur-type Fuji‘Tianhong 2’as the material,the vegetative growth,yield and fruit quality of 8 different rootstock-scion combinations were compared.[Results]‘Tianhong 2’/SH6 as self-rooted rootstock had large average single fruit weight(256.33 g),large number of fruits per plant(188.68),the highest yield[(3250.08±23.42)kg/667 m ^(2)]and the highest colored area(93.5%),and the soluble solid content reached the requirement of high quality fruit(15.78%).[Conclusions]In central and southern Hebei Province,‘Tianhong 2’grafted on SH6 self-rooted rootstock has moderate growth,high yield and good fruit quality,so it can be considered as the preferred rootstock-scion combination in the local area.
基金The authors are very much grateful to Bangladesh Agricultural University Research System(BAURES)Bangladesh Agricultural University,Mymensingh-2202,Bangladesh for the financial support through the research project entitled“Induction of Heat and Drought Tolerance in Wheat through Seed Priming”(Project No.2021/35/BAU)to carry out the research work.
文摘Seed priming is a pre-germinated technique that can enhance seed germination percentage,faster and synchro-nized germination,better seedling growth,and yield under stress conditions.To ascertain the most effective seed priming method that would ensure the potential yield of wheat in Bangladesh,two experiments were carried out from December 2021 to March 2022 at the Department of Agronomy,Bangladesh Agricultural University.Two wheat varieties namely BARI Gom-28 and BWMRI Gom-1 were subjected to a range of priming chemicals in both lab and pot tests.These compounds included the following:control(no priming),hydropriming(distilled water),10000 ppm KNO_(3),15000 ppm KNO_(3),40000 ppm Mannitol,60000 ppm Mannitol,10000 ppm NaCl,20000 ppm NaCl,100 ppm PEG,150 ppm PEG,500 ppm NaOCl,1000 ppm NaOCl,10000 ppm CaCl_(2),20000 ppm CaCl_(2),10000 ppm KCl and 20000 ppm KCl.A complete randomized design(CRD)with three repli-cations was used to set up the experiments.The results showed that BARI Gom-28 and BWMRI Gom-1 responded best to KCl priming in terms of rapid seed germination and strong seedling development.On the other hand,the best priming agents for plant growth and productivity turned out to be CaCl_(2) and KCL.The results of this study support the possibility of using seed priming as a technique to improve wheat plant development and output by raising seed emergence and survival rates.
基金funded by the National Natural Science Foundation of China(51969003)the Key Research and Development Project of Gansu Province(22YF7NA110)+4 种基金the Discipline Team Construction Project of Gansu Agricultural Universitythe Gansu Agricultural University Youth Mentor Support Fund Project(GAU-QDFC-2022-22)the Innovation Fund Project of Higher Education in Gansu Province(2022B-101)the Research Team Construction Project of College of Water Conservancy and Hydropower Engineering,Gansu Agricultural University(Gaucwky-01)the Gansu Water Science Experimental Research and Technology Extension Program(22GSLK023)。
文摘Wolfberry(Lycium barbarum L.)is important for health care and ecological protection.However,it faces problems of low productivity and resource utilization during planting.Exploring reasonable models for water and nitrogen management is important for solving these problems.Based on field trials in 2021 and 2022,this study analyzed the effects of controlling soil water and nitrogen application levels on wolfberry height,stem diameter,crown width,yield,and water(WUE)and nitrogen use efficiency(NUE).The upper and lower limits of soil water were controlled by the percentage of soil water content to field water capacity(θ_(f)),and four water levels,i.e.,adequate irrigation(W0,75%-85%θ_(f)),mild water deficit(W1,65%-75%θ_(f)),moderate water deficit(W2,55%-65%θ_(f)),and severe water deficit(W3,45%-55%θ_(f))were used,and three nitrogen application levels,i.e.,no nitrogen(N0,0 kg/hm^(2)),low nitrogen(N1,150 kg/hm^(2)),medium nitrogen(N2,300 kg/hm^(2)),and high nitrogen(N3,450 kg/hm^(2))were implied.The results showed that irrigation and nitrogen application significantly affected plant height,stem diameter,and crown width of wolfberry at different growth stages(P<0.01),and their maximum values were observed in W1N2,W0N2,and W1N3 treatments.Dry weight per plant and yield of wolfberry first increased and then decreased with increasing nitrogen application under the same water treatment.Dry weight per hundred grains and dry weight percentage increased with increasing nitrogen application under W0 treatment.However,under other water treatments,the values first increased and then decreased with increasing nitrogen application.Yield and its component of wolfberry first increased and then decreased as water deficit increased under the same nitrogen treatment.Irrigation water use efficiency(IWUE,8.46 kg/(hm^(2)·mm)),WUE(6.83 kg/(hm^(2)·mm)),partial factor productivity of nitrogen(PFPN,2.56 kg/kg),and NUE(14.29 kg/kg)reached their highest values in W2N2,W1N2,W1N2,and W1N1 treatments.Results of principal component analysis(PCA)showed that yield,WUE,and NUE were better in W1N2 treatment,making it a suitable water and nitrogen management mode for the irrigation area of the Yellow River in the Gansu Province,China and similar planting areas.
文摘The economy of most rural locations in the semi-arid region of Llano Estacado in the southern United States is predominantly based on agriculture, primarily beef and wheat (Triticum aestivum L.) production. This region is prone to drought and is projected to experience a drier climate. Droughts that coincide with the critical phenological phases of a crop can be remarkably costly. Although drought cannot be prevented, its losses can be minimized through mitigation measures if it is predicted in advance. Predicting yield loss from an imminent drought is an important need of stakeholders. One way to fulfill this need is using an agricultural drought index, such as the Agricultural Reference Index for Drought (ARID). Being plant physiology-based, ARID can represent drought-yield relationships accurately. This study developed an ARID-based yield model for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to water stress. The reasonable values of the drought sensitivity coefficients of the yield model indicated that it could reflect the phenomenon of water stress decreasing the winter wheat yields in this region reasonably. The values of the various metrics used to evaluate the model, including Willmott Index (0.86), Nash-Sutcliffe Index (0.61), and percentage error (26), indicated that the yield model performed fairly well at predicting the drought-induced yield loss for winter wheat. The yield model may be useful for predicting the drought-induced yield loss for winter wheat in the study region and scheduling irrigation allocation based on phenological phase-specific drought sensitivity.
文摘Wheat (Triticum aestivum L.) production is a major economic activity in most regional and rural areas in the Southern Plains, a semi-arid region of the United States. This region is vulnerable to drought and is projected to experience a drier climate in the future. Since the interannual variability in climate in this region is linked to an ocean-atmospheric phenomenon, called El Niño-Southern Oscillation (ENSO), droughts in this region may be associated with ENSO. Droughts that occur during the critical growth phases of wheat can be extremely costly. However, the losses due to an impending drought can be minimized through mitigation measures if it is predicted in advance. Predicting the yield loss from an imminent drought is crucial for stakeholders. One of the reliable ways for such prediction is using a plant physiology-based agricultural drought index, such as Agricultural Reference Index for Drought (ARID). This study developed ENSO phase-specific, ARID-based models for predicting the drought-induced yield loss for winter wheat in this region by accounting for its phenological phase-specific sensitivity to drought. The reasonable values of the drought sensitivity coefficients of the yield model for each ENSO phase (El Niño, La Niña, or Neutral) indicated that the yield models reflected reasonably well the phenomena of water stress decreasing the winter wheat yields in this region during different ENSO phases. The values of various goodness-of-fit measures used, including the Nash-Sutcliffe Index (0.54 to 0.67), the Willmott Index (0.82 to 0.89), and the percentage error (20 to 26), indicated that the yield models performed fairly well at predicting the ENSO phase-specific loss of wheat yields from drought. This yield model may be useful for predicting yield loss from drought and scheduling irrigation allocation based on the phenological phase-specific sensitivity to drought as impacted by ENSO.
基金Supported by National Key Technology R&D Program(2007BAD87B11)Project of Science & Technology Bureau in Xishuangbanna(YX200902)Project of National Tea Industry Technical System~~
文摘[Objective] The aim was to study the effect of apple-tea intercrop on the growth and yield of tea shoot.[Method] Comparing tea leaves in apple-tea intercrop garden with neighboring tea leaves,the change of tea growth and fresh leaves yield in annual growth cycle was observed.[Result] There was obvious difference of tea shoot growth in intercropping and control group in various seasons.In spring,summer and autumn,intercropping tea had lower canopy temperature and higher canopy humidity compared with control tea,while there was no obvious difference of canopy temperature and humidity in intercropping and control tea in winter;the respiratory intensity of intercropping tea was very significantly lower than that of control tea,and its net photosynthetic intensity was very significantly higher than that of control tea,while there was no obvious change law in photosynthetic rate;the effect of intercrop on budding density of tea shoot wasn't obvious,but it promoted early germination of tea bud,increased leaf weight and improved fresh leaf yield.[Conclusion] Our study could provide theoretical foundation for the rational allocation of intercrop in compound ecological tea garden and the production of non-polluted tea.
基金Supported by High Yield and High Efficiency Technology Project of National Food Production(2006BAD02A04)National Agricultural Technology Support Program(2007BAD87B08)+2 种基金Doctoral Starting Fund of Jiangxi Academy of Agricultural Sciences(2009Dr.-1)Subject Leader Plan of Jiangxi ProvincePostdoctoral Starting Fund of Chinese Academy of Agricultural Sciences~~
文摘[Objective]The paper was to study the effect of tiller-inhibitor on the growth and yield formation of super early rice Jinyou 458.[Method] Two treatments including spraying tiller-inhibitor(TI) and spraying water(CK) at the SN-n stage were set in the test,the effect of tiller-inhibitor on yield and its components,leaf and plant morphology,field microclimate at booting stage and quality characteristics of rice population were studied.[Result] Spraying tiller-inhibitor could effectively reduce the occurrence of invalid and inefficient tillers,increase the proportion of high effective tillers(tiller with 4 or more leaves) in tiller composition at the maximal tiller stage.The panicle length,spikelets per panicle,spikelets density,number of secondary branches and the secondary spikelets,seed setting rate of rice plant sprayed with tiller-inhibitor were significantly higher than CK.Meanwhile,spraying tiller-inhibitor could increase plant height,biomass weight and leaf area index of rice population during middle and late stages of rice growing,improve the leaf temperature of top three leaves and the light transmittance of rice population at the booting stage,increase the leaf SPAD value,thus enhance photosynthetic capacity of rice plants.It also showed the characteristics of elongating the internode of rice plant and decreasing the stem thickness,etc.[Conclusion] The panicle-bearing rate of stems and tillers,effective panicles,spikelets per panicle,seed setting rate and 1 000-grain weight had coordinately increased after spraying tiller-inhibitor,thus increased the yield.
文摘[Objective] This study aimed to investigate the effect of different boric fer- tilizer on the growth, yield and quality of strawberry. [Method] With a strawberry cultivar Hongyan as the test material, water, borax and foliar disodium octoborate tetrahydrate was respectively sprayed to the leaves of strawberry four times from the squaring stage on. At the initial flowering stage and mature stage, the plant height, stem diameter, leaf area and petiole length of strawberry were measured; at the harvest time, the single fruit weight of strawberry was measured; and at the mature stage, the VC, sugar and organic acids contents in the strawberry fruit were determined. [Result] Compared with the control group, the spraying of foliar disodi- um octoborate tetrahydrate promoted the growth and significantly increased the plant height and leaf area of strawberry. However, no significant difference was found in root shoot ratio of strawberry between foliar disodium octoborate tetrahydrate treat- ment and the control group. Spraying of boric fertilizers significantly increased the single fruit weight and yield of strawberry. Compare with the control group, the spraying of foliar disodium octoborate tetrahydrate and borax increased the single fruit weight of strawberry by 20.14% and 4.86% respectively, and increased the yield of strawberry by 17.28% and 4.02% respectively. Compared with borax treat- ment and the control group, spraying of foliar disodium octoborate tetrahydrate im- proved the quality, i.e., increased the VC content, soluble solids content and sugar- acid ratio in strawberry fruit. The B content in leaf of strawberry was increased after foliar B fertilization. Among the three groups, the B content in leaf of strawberry ranked as disodium octoborate tetrahydrate treatment's 〉 borax treatment's 〉 con- trol's. [Conclusion] Spraying foliar disodium octoborate tetrahydrate can promote the growth, yield and quality of strawberry.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303022)National Key Technology Research and Development Program during the 12th Five-Year Plan Period(2012BAD19B02)~~
文摘ObjectiveThis study aimed to investigate the effect of fulvic acid on the growth and yield components of direct seeding rice (Nanjing 44). MethodThe rice seeds were soaked in 0 (water as a control), 1, 2, 4 and 6 g/L fulvic acid (FA) before sowed. Then, the rice morphological indices, leaf chlorophyll content, photosynthesis parameters, root activity and chlorophyll fluorescence parameters were measured in the following field studies. ResultCompared with the control, the leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance and dry matter weight and some fluorescence parameters such as the maximum photochemical efficiency of photosystem II (PSII) (Fv/Fm), excitation energy capture efficiency of opened PSII reaction center (Fv’/Fm’) and efficiency of the open reaction centre (ΦPS II) increased by different levels at both jointing stage and heading stage of direct seeding rice, whose seeds were soaked by FA with different concentrations. High FA concentration (4-6 g/L) significantly increased the cultivated rice leaf area index, chlorophyll content, net photosynthetic rate, stomatal conductance, transpiration rate and dry matter weight by 10.32% -22.88% , 5.88% -13.11% , 12.16% -26.84% , 11.43% -88.46% , 10.63% -21.63% , 18.49% -19.68% , respectively, thereby improving the physiological function and light energy transform efficiency of rice at the growth stage. With FA concentration increasing, the yield, effective panicles, grain number per panicle and seed setting rate were increased significantly compared with the control by 17.52%-18.71%, 3.46%-3.85%, 6.30%- 6.51% and 7.82%-8.69% respectively. ConclusionSoaking rice seed with FA could be considered as an effective way to improve the rice competitiveness at early growth stage.
基金Supported by the Program of Ministry of Environmental Protection(200809093 )the Significant Science Planning Program of Guangdong Province (2008A080800028)~~
文摘[Objective] The aim was to study the damage and the mechanism of combined pollution of Pb and Cd on rice growth,yield and quality of rice. [Method]Effects of combined pollution of Pb and Cd on the growth and yield of rice were studied by pot experiment with cultivating rice. [Result] Pb and Cd could promote rice growth at low concentration while inhibit plant height at high concentration; Pb and Cd stress reduced the number of rice tillers significantly,with the increasing of stress concentration,the decrease amplitude of the number of tillers was greater; the panicle per pot,seed setting rate,1 000-grain weight and yield of rice were reduced significantly by Pb and Cd stress,the grain number per panicle decreased significantly under low concentration of Pb and Cd but increased significantly under high concentration; the brown rice rate and milled rice rate increased significantly under low concentration of Pb and Cd while at high concentration of Pb and Cd,the both two reduced significantly,the head milled rice rate reduced significantly with the decreasing of concentration; The Pb and Cd content of grains were significantly positively related to the concentrations of Pb and Cd content in soil,it had excessively exceeded hygienic standard when the concentrations of Pb and Cd in soil were medium-high and the unqualified rate reached 333% and 122%. [Conclusion]The study had provided basis for the establishment of rice cultivation system in pollution areas.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201203079,201503130)Science and Technology Development Project of Shandong Province(2014GNC113001,2014GNC112003)Science and Technology Development Project of Taian City(201440774-19B)~~
文摘[Objective] Effects of controlled release N fertilizers on wheat growth and yield were studied to provide reference for the application of controlled release fertilizers on wheat. [Method] A field experiment was conducted to study the effects of different types and levels of controlled release N fertilizers on the growth and yield of wheat. In this experiment, a treatment with the application of common urea and potassium chloride(common fertilizer) was established, and treatments with controlled release N fertilizers A and B with different coating materials were also established. [Result] The results showed that under the condition of the same P and K levels, controlled release N fertilizer A at a proportion of 100%, controlled release N fertilizer A at a proportion of 80% and controlled release N fertilizer B at a proportion of 80% could promote wheat growth, optimize yield components, and increase the amount of dry matter accumulation and grain yield. [Conclusion] One-time application of controlled release N fertilizer could be adopted in wheat production to achieve the purposes of saving fertilizer, saving labor and increasing efficiency.
基金Supported by Natural Science Foundation of China(NSFC No.30771272,31171483)the Priority Academic Development Program of Jiangsu Higher Education Institutions+1 种基金Jiangsu Innovation Project for Agriculture Science and Technology(cx(11)2054)Jiangsu Agriculture Science and Technology Support Program(SBE2010307)~~
文摘[Objective] This study aimed to explore an optimum application amount of nitrogen for cotton cultivation. [Method] In this study, a field experiment was conducted to investigate the effects of nitrogen application amount on the growth characteristics, boll development and lint yield of high quality cotton line FZ-1. [Result] Compared with the nitrogen level of 225 kg/hm2, the lint yield had increased by 28.46% and 18.73%, respectively, with the nitrogen application amount of 300 and 375 kg/hm2. When the nitrogen application amount had increased from 225 to 300 kg/hm2, boll number per plant, boll weight and lint yield had significantly increased. At the nitrogen level of 375 kg/hm2, however, the effects of increasing lint yield were significantly less than that at the nitrogen level of 300 kg/hm2. Compared with the nitrogen levels of 225 and 375, 300 kg/hm2 of nitrogen was the optimum application amount to improve the plant height, daily increment of plant height, number of fruit branches, number ratio of nodes to fruit branches, boll volume and seed cotton weight per boll. [Conclusion] The rational management of nitrogen is the most effective way to promote the growth and development of cotton plants, ensure high yielding ability and minimize the environmental pollution caused by the overuse of nitrogen. This study had provided a sound nitrogen application strategy for the cultivation of this high-quality cotton line in the field plantation.
基金Supported by the Earmarked Fund for China Agriculture Research System(CARS-12)~~
文摘The research explored effects of cultivation methods on growth, yield and quality of cassava. The results showed that the mulching treatment by direct seed- ing, the mulching treatment by transplanting, and the exposed treatment by trans- planting performed excellently in bringing seedling stage forward, improving germina- tion rate, yield and quality. For example, seedling emergence stages were 36, 31 and 31 d earlier; germination rates improved by 19.24%, 14.29% and 14.29%; yields grew by 41.98%, 26.72% and 11.45%; starch contents increased by 3.50%, 2.10% and 1.40%, respectively. Therefore, cassava in the mulching treatment by direct seeding is characterized by earlier seedling emergence stage, high germination rate, high yield and quality.
基金Supported by National Science and Technology Innovation Program for High-yielding and High-efficiency Grain Crops(2013BAD07B13-02)Special Fund for Agro-scientific Research in the Public Interest(201303102)~~
文摘The effects of farming method, rice variety and seedling-raising method were studied on the population growth quality and grain yield of the mechanized transplanting rice by way of three-factor split plot design. The results showed that the no-tillage mechanical transplanting treatment was poorer than the conventional mechanical transplanting treatment in transplanting quality in general, but the former was similar to the latter in population growth quality. In regard to grain yield, the no-tillage mechanical transplanting treatment was lower than the conventional me- chanical transplanting treatment. Raising both pot-mat seedling and plastic-tray seedling did not make much difference in population growth and grain yield of mechanized transplanting rice, so both of the seedling-raising methods can be adopted according to practical conditions.
基金Supported by Special Fund for Yancheng Agricultural Science and Technology Innovation(YK2013012)~~
文摘The research reviewed use effects of Yuhuangjin, Xishibao, Zhuangfengling and Jianzhuangsu on Jinhai No. 5. The results showed plant height and ear height declined in varying degrees, as well as empty-stalk rate and lodging rate, with the plant growth regulators applied. Economic characters all improved, including ear length and diameter, barren-tip length and hundred-seed weight, and corn yield went up significantly on average. For example, the increased yield can be as high as 17.43% when Yuhuangjin was applied at 30 ml/hm^2.