期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
THE RELATIONSHIP BETWEEN GLOBAL WARMING AND THE VARIATION IN TROPICAL CYCLONE FREQUENCY OVER THE WESTERN NORTH PACIFIC 被引量:8
1
作者 马丽萍 陈联寿 《Journal of Tropical Meteorology》 SCIE 2009年第1期38-44,共7页
The relationship between global warming and the variation in tropical cyclone (TC) genesis frequency is analyzed using the data of the Tropical Cyclone Year Book by the China Meteorological Administration and the Nati... The relationship between global warming and the variation in tropical cyclone (TC) genesis frequency is analyzed using the data of the Tropical Cyclone Year Book by the China Meteorological Administration and the National Centers for Environmental Prediction (NCEP) reanalysis data from 1949 to 2007. The observational results indicate that the average sea surface temperature (SST) in the Intertropical Convergence Zone (ITCZ) region (10°N– 20°N, 100°E– 140°E) increases by 0.6°C against the background of global warming, while the frequency of tropical cyclone geneses in this region decreases significantly. Generally, the rise of SSTs is favorable for the genesis of tropical cyclones, but it is now shown to be contrary to the normal effect. Most of the tropical cyclones in the western North Pacific (WNP) are generated in the ITCZ. This is quite different from the case in the Atlantic basin in which the tropical cyclones are mostly generated from the easterly wave. Our research results demonstrate that the ITCZ has a weakening trend in strength, and it has moved much more equatorward in the past 40 years; both are disadvantageous to the formation of tropical cyclones. Furthermore, our study also found that the ridge of the subtropical high tends to shift slightly equatorward, which is another adverse mechanism for the formation of tropical cyclones. 展开更多
关键词 CLIMATOLOGY tropical cyclone frequency long-term variation ITCZ
下载PDF
The Relationship Between Indian Ocean SST and Tropical Cyclone Genesis Frequency over North Indian Ocean in May 被引量:2
2
作者 陈艳 晏红明 +2 位作者 陶云 杨坤琳 王梦秋 《Journal of Tropical Meteorology》 SCIE 2023年第3期359-369,共11页
Tropical cyclone(TC)activities in the North Indian Ocean(NIO)peak in May during the pre-monsoon period,but the TC frequency shows obvious inter-annual variations.By conducting statistical analysis and dynamic diagnosi... Tropical cyclone(TC)activities in the North Indian Ocean(NIO)peak in May during the pre-monsoon period,but the TC frequency shows obvious inter-annual variations.By conducting statistical analysis and dynamic diagnosis of long-term data from 1948 to 2016,the relationship between the inter-annual variations of Indian Ocean SST and NIO TC genesis frequency in May is analyzed in this paper.Furthermore,the potential mechanism concerning the effect of SST anomaly on TC frequency is also investigated.The findings are as follows:1)there is a broadly consistent negative correlation between NIO TC frequency in May and SST in the Indian Ocean from March to May,with the key influencing area located in the southwestern Indian Ocean(SWIO);2)the anomalies of SST in SWIO(SWIO-SST)are closely related to a teleconnection pattern surrounding the Indian Ocean,which can significantly modulate the high-level divergence,mid-level vertical motion and other related environmental factors and ultimately influence the formation of TCs over the NIO;3)the increasing trend of SWIO-SST may play an essential role in the downward trend of NIO TC frequency over the past 69 years. 展开更多
关键词 North Indian Ocean frequency of tropical cyclone genesis SST TELECONNECTION
下载PDF
Interdecadal change of the linkage between the North Atlantic Oscillation and the tropical cyclone frequency over the western North Pacific 被引量:13
3
作者 ZHOU BoTao CUI Xuan 《Science China Earth Sciences》 SCIE EI CAS 2014年第9期2148-2155,共8页
The relationship between the North Atlantic Oscillation(NAO) and the tropical cyclone frequency over the western North Pacific(WNPTCF) in summer is investigated by use of observation data. It is found that their linka... The relationship between the North Atlantic Oscillation(NAO) and the tropical cyclone frequency over the western North Pacific(WNPTCF) in summer is investigated by use of observation data. It is found that their linkage appears to have an interdecadal change from weak connection to strong connection. During the period of 1948–1977, the NAO was insignificantly correlated to the WNPTCF. However, during the period of 1980–2009, they were significantly correlated with stronger(weaker) NAO corresponding to more(fewer) tropical cyclones in the western North Pacific. The possible reason for such a different relationship between the NAO and the WNPTCF during the former and latter periods is further analyzed from the perspective of large-scale atmospheric circulations. When the NAO was stronger than normal in the latter period, an anomalous cyclonic circulation prevailed in the lower troposphere of the western North Pacific and the monsoon trough was intensified, concurrent with the eastward-shifting western Pacific subtropical high as well as anomalous low-level convergence and high-level divergence over the western North Pacific. These conditions favor the genesis and development of tropical cyclones, and thus more tropical cyclones appeared over the western North Pacific. In contrast, in the former period, the impact of the NAO on the aforementioned atmospheric circulations became insignificant, thereby weakening its linkage to the WNPTCF. Further study shows that the change of the wave activity flux associated with the NAO during the former and latter periods may account for such an interdecadal shift of the NAO–WNPTCF relationship. 展开更多
关键词 tropical cyclone frequency North Atlantic Oscillation interdecadal change wave activity flux atmospheric circulation
原文传递
Annual Frequency of Tropical Cyclones Directly Affecting Guangdong Province:Prediction Based on LSTM-FC 被引量:2
4
作者 HU Ya-min CHEN Yun-zhu +8 位作者 HE Jian LIU Sheng-jun YAN Wen-jie ZHAO Liang WANG Ming-sheng LI Zhi-hui WANG Juan-huai DONG Shao-rou LIU Xin-ru 《Journal of Tropical Meteorology》 SCIE 2022年第1期45-56,共12页
Tropical cyclone(TC)annual frequency forecasting is significant for disaster prevention and mitigation in Guangdong Province.Based on the NCEP-NCAR reanalysis and NOAA Extended Reconstructed global sea surface tempera... Tropical cyclone(TC)annual frequency forecasting is significant for disaster prevention and mitigation in Guangdong Province.Based on the NCEP-NCAR reanalysis and NOAA Extended Reconstructed global sea surface temperature(SST)V5 data in winter,the TC frequency climatic features and prediction models have been studied.During 1951-2019,353 TCs directly affected Guangdong with an annual average of about 5.1.TCs have experienced an abrupt change from abundance to deficiency in the mid to late 1980 with a slightly decreasing trend and a normal distribution.338 primary precursors are obtained from statistically significant correlation regions of SST,sea level pressure,1000hPa air temperature,850hPa specific humidity,500hPa geopotential height and zonal wind shear in winter.Then those 338 primary factors are reduced into 19 independent predictors by principal component analysis(PCA).Furthermore,the Multiple Linear Regression(MLR),the Gaussian Process Regression(GPR)and the Long Short-term Memory Networks and Fully Connected Layers(LSTM-FC)models are constructed relying on the above 19 factors.For three different kinds of test sets from 2010 to 2019,2011 to 2019 and 2010 to 2019,the root mean square errors(RMSEs)of MLR,GPR and LSTM-FC between prediction and observations fluctuate within the range of 1.05-2.45,1.00-1.93 and 0.71-0.95 as well as the average absolute errors(AAEs)0.88-1.0,0.75-1.36 and 0.50-0.70,respectively.As for the 2010-2019 experiment,the mean deviations of the three model outputs from the observation are 0.89,0.78 and 0.56,together with the average evaluation scores 82.22,84.44 and 88.89,separately.The prediction skill comparisons unveil that LSTM-FC model has a better performance than MLR and GPR.In conclusion,the deep learning model of LSTM-FC may shed light on improving the accuracy of short-term climate prediction about TC frequency.The current research can provide experience on the development of deep learning in this field and help to achieve further progress of TC disaster prevention and mitigation in Guangdong Province. 展开更多
关键词 tropical cyclone frequency long short-term memory network fully connected layers Gaussian process regression multiple linear regression
下载PDF
RELATIONSHIPS BETWEEN ZONAL WIND ANOMALIES IN HIGH AND LOW TROPOSPHERE AND ANNUAL FREQUENCY OF NW PACIFIC TROPICAL CYCLONES
5
作者 龚振淞 何敏 《Journal of Tropical Meteorology》 SCIE 2007年第2期169-172,共4页
Relationships between large-scale zonal wind anomalies and annual frequency of NW Pacific tropical cyclones and possible mechanisms are investigated with the methods of correlation and composition. It is indicated tha... Relationships between large-scale zonal wind anomalies and annual frequency of NW Pacific tropical cyclones and possible mechanisms are investigated with the methods of correlation and composition. It is indicated that when A U2oo- A U850 〉0 in the eastern tropical Pacific and A U2oo- A U850 〈0 in western tropical Pacific, the Walker cell is stronger in the Pacific tropical region and the annual frequency of NW Pacific tropical cyclone are above normal. In the years with zonal wind anomalies, the circulation of high and low troposphere and the vertical motions in the troposphere have significant characteristics. In the time scale of short-range climate prediction, zonal wind anomalies in high and low troposphere are useful as a preliminary signal of the annual frequency prediction of NW Pacific tropical cyclones. 展开更多
关键词 zonal wind anomalies in high and low troposphere annual frequency of tropical cyclone short-rangeclimatc prediction
下载PDF
Seasonal Prediction of Tropical Cyclones and Storms over the Southwestern Indian Ocean Region Using the Generalized Linear Models
6
作者 Kombo Hamad Kai Yohanna Wilson Shaghude +4 位作者 Christian Bs Uiso Agnes Laurent Kijazi Sarah Osima Sara Abdalla Khamis Asya Omar Hamad 《Atmospheric and Climate Sciences》 CAS 2023年第2期103-137,共35页
Tropical cyclones (TCs) and storms (TSs) are among the devastating events in the world and southwestern Indian Ocean (SWIO) in particular. The seasonal forecasting TCs and TSs for December to March (DJFM) and November... Tropical cyclones (TCs) and storms (TSs) are among the devastating events in the world and southwestern Indian Ocean (SWIO) in particular. The seasonal forecasting TCs and TSs for December to March (DJFM) and November to May (NM) over SWIO were conducted. Dynamic parameters including vertical wind shear, mean zonal steering wind and vorticity at 850 mb were derived from NOAA (NCEP-NCAR) reanalysis 1 wind fields. Thermodynamic parameters including monthly and daily mean Sea Surface Temperature (SST), Outgoing Longwave Radiation (OLR) and equatorial Standard Oscillation Index (SOI) were used. Three types of Poison regression models (i.e. dynamic, thermodynamic and combined models) were developed and validated using the Leave One Out Cross Validation (LOOCV). Moreover, 2 × 2 square matrix contingency tables for model verification were used. The results revealed that, the observed and cross validated DJFM and NM TCs and TSs strongly correlated with each other (p ≤ 0.02) for all model types, with correlations (r) ranging from 0.62 - 0.86 for TCs and 0.52 - 0.87 for TSs, indicating great association between these variables. Assessment of the model skill for all model types of DJFM and NM TCs and TSs frequency revealed high skill scores ranging from 38% - 70% for TCs and 26% - 72% for TSs frequency, respectively. Moreover, results indicated that the dynamic and combined models had higher skill scores than the thermodynamic models. The DJFM and NM selected predictors explained the TCs and TSs variability by the range of 0.45 - 0.65 and 0.37 - 0.66, respectively. However, verification analysis revealed that all models were adequate for predicting the seasonal TCs and TSs, with high bias values ranging from 0.85 - 0.94. Conclusively, the study calls for more studies in TCs and TSs frequency and strengths for enhancing the performance of the March to May (MAM) and December to October (OND) seasonal rainfalls in the East African (EA) and Tanzania in particular. 展开更多
关键词 Tropical cyclones and Storms frequency Thermodynamic and Dynamic Models Skill Scores TCs/TSs Variability and Verification Leave One out Cross Validation
下载PDF
Recent Decrease in the Difference in Tropical Cyclone Occurrence between the Atlantic and the Western North Pacific 被引量:1
7
作者 Johnny C.L.CHAN Kin Sik LIU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第9期1387-1397,共11页
Climatologically,among all ocean basins,the western North Pacific(WNP)has the largest annual number of tropical cyclones(TCs)of around 26 while the Atlantic has around 13,yielding a difference of 13.However,the differ... Climatologically,among all ocean basins,the western North Pacific(WNP)has the largest annual number of tropical cyclones(TCs)of around 26 while the Atlantic has around 13,yielding a difference of 13.However,the difference is-7 in 2020,with 30 TCs in the Atlantic and 23 in the WNP,which is the most negative difference within the last 46 years.In fact,during the last 26 years,the difference in TC number is below 10 in ten years,with four years being negative.Such a decreasing difference in TC number can be attributed to the natural multidecadal variation of the Atlantic Multidecadal Oscillation and Interdecadal Pacific Oscillation,as well as other external forcings such as anthropogenic aerosol forcing and increased greenhouse gases,with the additional impact from the La Niña condition.This result has significant implications on climate model projections of future TC activity in the two ocean basins. 展开更多
关键词 tropical cyclone frequency Atlantic Multidecadal Oscillation Interdecadal Pacific Oscillation climate change
下载PDF
DIFFERENCES AMONG DIFFERENT DATABASES IN THE NUMBER OF TROPICAL CYCLONES FORMING OVER THE WESTERN NORTH PACIFIC 被引量:1
8
作者 吴胜安 孔海江 吴慧 《Journal of Tropical Meteorology》 SCIE 2010年第4期341-347,共7页
As shown in comparisons of the characteristics of inter-annual and inter-decadal variability and periodical changes in the number of tropical cyclones forming over the western North Pacific by three major forecast cen... As shown in comparisons of the characteristics of inter-annual and inter-decadal variability and periodical changes in the number of tropical cyclones forming over the western North Pacific by three major forecast centers, i.e. China Meteorological Administration (CMA), Regional Specialized Meteorological Center of Tokyo (JMA) and Joint Typhoon Warning Center (JTWC) of Guam, there are the following important points. (1) Climatology of tropical cyclone (TC) or typhoon (TC on the intensity of TS or stronger) shows some difference in tropical cyclone frequency among the centers, which is more notable with TC than with typhoon. Both of them are more at the database of CMA than at those of the other two centers. (2) The difference is too significant to ignore in the inter-annual variability of tropical cyclone frequency between CMA and JTWC, which mainly results from the obvious difference in the inter-annual variability of the number of generated tropical depression (TD) between the two databases. The difference is small in the inter-annual variability of TS formations among all the three databases, and consistence is good between JMA and CMA or JTWC. (3) Though differences are not significant in the periodical variation of TC formations between CMA and JTWC, they are markedly apart in the inter-decadal variability, which is mainly shown by an anti-phase during the 1990s. (4) Non-homogeneity may exist around the late stage of the 1960s in the data of tropical cyclone frequency. 展开更多
关键词 statistical characters difference comparison tropical cyclone frequency non-homogeneity
下载PDF
Analysis and prognosis of tropical cyclone genesis over the western North Pacific on the background of global warming 被引量:5
9
作者 LI Yongping WANG Xiaofeng YU Runling QIN Zenghao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2007年第1期23-34,共12页
As revealed by the observational study, there are more tropical cyclones generated over the western North Pacific from the early 1950s to the early 1970s in the 20th century and less tropical cyclones from the mid-197... As revealed by the observational study, there are more tropical cyclones generated over the western North Pacific from the early 1950s to the early 1970s in the 20th century and less tropical cyclones from the mid-1970s to the present. The decadal change of "tropical cyclones activities are closely related to the decadal changes of atmospheric general circulation in the troposphere, which provide favorable or unfavorable conditions for the formation of tropical cyclone. Furthermore, based on the simulation of corresponding atmospheric general circulation from a coupled climate model under the schemes of Intergovemmental Panel on Climate Change (IPCC),special report on emission scenarios (SRES) A2 and B2 emissions scenarios an outlook on the tropical cyclone frequency generated over the western North Pacific in the coming half century is presented. It is indicated that in response to the global climate change the general circulation of atmosphere would become unfavorable for the formation of tropical cyclone as a whole and the frequency of tropical cyclones formation would likely decrease by 5% within the next half century, although more tropical cyclones would appear during a short period in it. 展开更多
关键词 IPCC SRES A2 and B2 general circulation anomaly frequency of tropical cyclone
下载PDF
Variability of Tropical Cyclone in High Frequent Occurrence Regions over the Western North Pacific 被引量:1
10
作者 YANG Yuxing HUANG Fei WANG Faming 《Journal of Ocean University of China》 SCIE CAS 2014年第3期347-355,共9页
In this study, three high frequent occurrence regions of tropical cyclones(TCs), i.e., the northern South China Sea(the region S), the south Philippine Sea(the region P) and the region east of Taiwan Island(the region... In this study, three high frequent occurrence regions of tropical cyclones(TCs), i.e., the northern South China Sea(the region S), the south Philippine Sea(the region P) and the region east of Taiwan Island(the region E), are defined with frequency of TC's occurrence at each grid for a 45-year period(1965–2009), where the frequency of occurrence(FO) of TCs is triple the mean value of the whole western North Pacific. Over the region S, there are decreasing trends in the FO of TCs, the number of TCs' tracks going though this region and the number of TCs' genesis in this region. Over the region P, the FO and tracks demonstrate decadal variation with periods of 10–12 year, while over the region E, a significant 4–5 years' oscillation appears in both FO and tracks. It is demonstrated that the differences of TCs' variation in these three different regions are mainly caused by the variation of the Western Pacific Subtropical High(WPSH) at different time scales. The westward shift of WPSH is responsible for the northwesterly anomaly over the region S which inhibits westward TC movement into the region S. On the decadal timescale, the WPSH stretches northwestward because of the anomalous anticyclone over the northwestern part of the region P, and steers more TCs reaching the region P in the greater FO years of the region P. The retreating of the WPSH on the interannual time scale is the main reason for the FO's oscillation over the region E. 展开更多
关键词 high frequent occurrence regions frequency of tropical cyclone's occurrence western Pacific subtropical high
下载PDF
THE CHARACTERISTICS OF TEMPORAL AND SPATIAL DISTRIBUTION OF TROPICAL CYCLONE FREQUENCIES OVER THE SOUTH CHINA SEA AND ITS AFFECTING OCEANIC FACTORS IN THE PAST 50 YEARS
11
作者 李春晖 刘春霞 程正泉 《Journal of Tropical Meteorology》 SCIE 2007年第2期189-192,共4页
The characteristics of temporal and spatial distribution of tropical cyclone frequencies over the South China Sea areas and its affecting factors in the past 50yrs are analyzed based on typhoon data that provided by C... The characteristics of temporal and spatial distribution of tropical cyclone frequencies over the South China Sea areas and its affecting factors in the past 50yrs are analyzed based on typhoon data that provided by CMA and Simple Ocean Data Assimilation (SODA). The results show that the tropical cyclone frequencies from June to October show concentrated geographic distribution, for they mainIy distribute over the SCS area from 15 - 20°N. The characteristics present significant interdecadal changes. The impact of oceanic factors on the tropical cyclone frequencies in the SCS area is mainly realized by La Nina and La Nifia-like events before 1975 but mainly by E1 Nino and E1 Nifio-like events after 1975. 展开更多
关键词 South China Sea tropical cyclone frequencies temporal and spatial distribution affecting factors
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部