期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Chromosome-level genome assembly of Cylas formicarius provides insights into its adaptation and invasion mechanisms
1
作者 HUA Jin-feng ZHANG Lei +6 位作者 HAN Yong-hua GOU Xiao-wan CHEN Tian-yuan HUANG Yong-mei LI Yan-qing MA Dai-fu LI Zong-yun 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期825-843,共19页
Cylasformicarius is one of the most important pests of sweet potato worldwide, causing considerable ecological and economic damage.This study improved the effect of comprehensive management and understanding of geneti... Cylasformicarius is one of the most important pests of sweet potato worldwide, causing considerable ecological and economic damage.This study improved the effect of comprehensive management and understanding of genetic mechanisms by examining the functional genomics of C. formicarius.Using Illumina and PacBio sequencing, this study obtained a chromosome-level genome assembly of adult weevils from lines inbred for 15 generations.The high-quality assembly obtained was 338.84 Mb, with contig and scaffold N50 values of 14.97 and 34.23 Mb, respectively.In total, 157.51 Mb of repeat sequences and 11 907 protein-coding genes were predicted.A total of 337.06 Mb of genomic sequences was located on the 11 chromosomes, accounting for 99.03%of the total length of the associated chromosome.Comparative genomic analysis showed that C. formicarius was sister to Dendroctonus ponderosae, and C. formicarius diverged from D. ponderosae approximately 138.89 million years ago (Mya).Many important gene families expanded in the C. formicarius genome were involved in the detoxification of pesticides, tolerance to cold stress and chemosensory system.To further study the role of odorant-binding proteins (OBPs) in olfactory recognition of C. formicarius, the binding assay results indicated that Cfor OBP4–6 had strong binding affinities for sex pheromones and other ligands.The high-quality C. formicarius genome provides a valuable resource to reveal the molecular ecological basis, genetic mechanism, and evolutionary process of major agricultural pests;it also offers new ideas and new technologies for ecologically sustainable pest control. 展开更多
关键词 cylas formicarius PacBio sequencing high-through chromosome conformation capture chromosome-level genome chemosensory genes fluorescence competitive binding
下载PDF
Evaluation of Effects of Tea Saponin on Behavior, Growth and Development of Cylas formicarius (Coleoptera: Brentidae)
2
作者 Rujun PAN Xiuhua TANG +1 位作者 Longfei HE Liyun REN 《Agricultural Biotechnology》 CAS 2019年第6期36-41,共6页
[Objectives] This study was conducted to expand the insect resistance spectrum of tea saponin, and its control effect on Cylas formicarius and the potential as an insecticide for pest control were explored. [Methods] ... [Objectives] This study was conducted to expand the insect resistance spectrum of tea saponin, and its control effect on Cylas formicarius and the potential as an insecticide for pest control were explored. [Methods] The olfactory avoidance rate of C. formicarius to tea saponin aqueous solution was determined by Y-type olfactometer;the feeding avoidance rate of C. formicarius to tea saponin was determined by the selective method;the antifeedant rate of C. formicarius to tea saponin was determined by non-selective method;and the development duration and mortality of C. formicarius under the influence of tea saponin were determined by artificial feeding method. [Results] C. formicarius had no significant olfactory tendency to every concentration of tea saponin, and the olfactory avoidance rate of 20.0% tea saponin aqueous solution was only 9.14%. Tea saponin had a feeding avoidance effect on C. formicarius, and the avoidance rate increased with the increase of tea saponin concentration. At 6 h, the feeding avoidance rates of 0.5%, 1.0%, 5.0%, 10.0% and 20.0% tea saponin on C. formicarius were 58.14%, 77.77%, 88.23%, 95.00% and 97.65 %, respectively;and the feeding avoidance effect at 6 h was significant, and the feeding avoidance rate was higher than that of 1 h. Tea saponin had a significant antifeedant effect on C. formicarius, and the longer the feeding time, the higher the antifeedant rate. At 72 h, the antifeedant rates of 0.5%, 1.0%, 5.0%, 10.0 % and 20.0% tea saponin to C. formicarius were 63.01%, 67.54%, 97.14 %, 96.42% and 98.57%, respectively. The larval development duration of C. formicarius was shortened with the increase of tea saponin concentration, and the larval death occurred. The development duration of larvae under the influence of 1.0% tea saponin was the shortest, which was 4.01 d shorter than that of the control, and the mortality was the highest, which was 26.65%. [Conclusions] Tea saponin had neither olfactory avoidance effect nor olfactory attracting effect to C. formicarius, but had obvious feeding avoidance effect and strong antifeedant effect. Tea saponin can shorten the development duration of the larvae of C. formicarius and cause the death of the larvae. 展开更多
关键词 Tea saponin cylas formicarius Avoidance effect Antifeedant effect Artificial feeding method Developmental duration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部