The fluid fluctuating velocity equations which include the term of cylinder particles were established. The turbulent intensity and Reynolds stress of fluid were obtained by averaging fluctuating velocity based on the...The fluid fluctuating velocity equations which include the term of cylinder particles were established. The turbulent intensity and Reynolds stress of fluid were obtained by averaging fluctuating velocity based on the solution of the fluctuating velocity equations. Above approach was used to solve the channel turbulent flows, and computational results were compared with the experimental ones for the case of single phase flow. The effects of volume fraction of particles, the ratio of particle length to diameter and the particle relaxation time on turbulent properties were illustrated by changing cylinder particle parameters. It is shown that particles play a restraining role to turbulent properties in the flows. The degree of restraint is directly proportional to the volume fraction of particle, the ratio of particle length to diameter and inversely proportional to particle relaxation time.展开更多
The coarse-grained discrete element method(DEM)is probably a feasible option for simulating an actual drum-type biomass boiler,which contains over 10 million cylinder particles.A multi-level study was conducted based ...The coarse-grained discrete element method(DEM)is probably a feasible option for simulating an actual drum-type biomass boiler,which contains over 10 million cylinder particles.A multi-level study was conducted based on particle and coarse-grained level data to evaluate the adequacy of the coarse-grained approach in terms of geometrical characteristics,kinematic features,and dynamic properties.Two scaling laws for contact parameters were used and compared during the simulations.The results show that the coarse-grained approach can accurately predict the positions of the free surface and active-passive interface,the mixing index,and the orientation properties.Deviations in the velocity fields may occur due to the worse flowability of coarse-grained particles near the free surface.The efficiency is significantly improved by the coarse-grained model compared with the corresponding original case(the same DEM code without a coarse-grained model was used for the original simulations).展开更多
-Based on the extended Morison Equation and model tests, the in-line forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in detail in this paper. The hydrodynamic coeffic...-Based on the extended Morison Equation and model tests, the in-line forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in detail in this paper. The hydrodynamic coefficient CD and Cu related to KC number and the effect of direction of wave incidence are also given, which can be used in engineering practice.展开更多
Based on model tests, the lift and resultant forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in this paper. The lift and resultant force coefficients CL and Cf relate...Based on model tests, the lift and resultant forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in this paper. The lift and resultant force coefficients CL and Cf related to KC number and the effect of direction of wave propagation are also given, which may be useful for practical engineering application.展开更多
Digital factory technology is an advanced manufacturing technology served as to establish a bridge between the process of product development and manufacturing.In terms of application for digital factory technology in...Digital factory technology is an advanced manufacturing technology served as to establish a bridge between the process of product development and manufacturing.In terms of application for digital factory technology in machining,especially in machining of a complicated part such as a cylinder body part,a concept of digital process planning and its framework are proposed.Its components including machining domain knowledge model,machining knowledge base,machining resource base and process planning system are studied.A machining knowledge model in tree form and an object-driven knowledge reasoning mechanism are used for machining knowledge base.The process planning system is a user interface that leads a planner to finish the planning process.A case about a cylinder head part is given to demonstrate how the platform works.The framework of digital process planning is the foundation of some intelligent CAPP systems and helps to production line planning.展开更多
Suppose that the motion of the water is produced by the small amplitude periodic motion of a partially immersed cylinder and the water is incompressible, inviscid and irrotational. We denote by C the wetted curve of t...Suppose that the motion of the water is produced by the small amplitude periodic motion of a partially immersed cylinder and the water is incompressible, inviscid and irrotational. We denote by C the wetted curve of the cylinder cross section. Let the coordinate axis ox be along the undisturbed free surface and let oy lie in the C plane, be vertical and point downward to the water. Let the origin o be at the center of the x-axis within the cylinder cross section. We denote by a the distance between the origin and the intersection point of the curve C and the x-axis. We may use the velocity potential φ(x, y) exp (—iωt) to describe the motion of the water with angular frequency to in the half-plane y>0. Then, φ(x, y) satisfies the following展开更多
When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the fr...When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the frequency response and control accuracy of the servo cylinder. Based on this partial load, increased friction can lead to cylinder bore scu ng, leakage, lack of output power, or even system failure. In this paper, a novel asymmetric static-pressure support structure is proposed based on the principle of hydrostatic support. The radial component force of a dynamic partial load is balanced by cooperation between the support oil cushion of the variable hydraulic pressure support structure, oil cushion of the supportive force, and the damper. Adaptive control of the servo cylinder piston rod, guide sleeve, and piston, as well as the cylinder oil film friction between lubricated surfaces is achieved. In this paper, theoretical design and analysis of the traditional hydrostatic bearing structure and novel structure are presented. A hydraulic dynamic shear scissor is used as a research target to derive a structural dynamic model. Comparative simulations are performed using Matlab Simulink. Additionally, flow field analysis of the novel structure is performed, which verifies the rationality and feasibility of the proposed structure and system.展开更多
The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of ...The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.展开更多
The transition from an axisymmetric stationary flow to three-dimensional time-dependent flows is carefully studied in a vertical cylinder partially heated from the side, with the aspect ratio A = 2 and Prandtl number ...The transition from an axisymmetric stationary flow to three-dimensional time-dependent flows is carefully studied in a vertical cylinder partially heated from the side, with the aspect ratio A = 2 and Prandtl number Pτ=0.021. The flow develops from the steady toroidal pattern beyond the first instability threshold, breaks the axisymmetric state at a Rayleigh number near 2000, and transits to standing or travelling azimuthal waves. A new result is observed that a slightly unstable flow pattern of standing waves exists and will transit to stable travelling waves after a long time evolution. The onset of oscillations is associated with a supercritical Hopf bifurcation in a system with O(2) symmetry.展开更多
Large-scale interceptors constitute the main structure of offshore self-driven floating marine litter collection devices,and the structural stability of such interceptors under the action of waves directly influences ...Large-scale interceptors constitute the main structure of offshore self-driven floating marine litter collection devices,and the structural stability of such interceptors under the action of waves directly influences the overall safety of the device.When the ratio of the diameter of a horizontal cylinder in such interceptors to the incident wavelength is larger than 0.25,the wave force can be calculated by using the diffraction theory,by considering the problem as that of the interaction between the waves and a partially immersed large-scale horizontal cylinder.In this study,an analytical approach to calculate the wave force on a partially immersed large-scale horizontal cylinder was formulated by using the stepwise approximation method.Physical model tests were conducted to investigate the effects of different factors(wave height,period,and immersion depth)on the wave force on a large-scale horizontal cylinder under conditions involving short-period waves.The results show that both horizontal and vertical wave forces on the cylinder increase as the wave height(immersion depth)increases in most cases.The vertical wave force decreases with the decrease of the period.For the horizontal wave force,it increases with the decrease of the period when the wavelength is larger than the diameter of the cylinder and decreases with the decrease of the period when the wavelength is smaller than the diameter of the cylinder.展开更多
The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating veloc...The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30 mu m similar to 60 mu m and 80 mu m similar to 150 mu m) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross how over a cylinder.展开更多
Analytical solutions for the rotating variable-thickness inhomogeneous, orthotropic, hollow cylinders under plane strain assumption are developed in Part I of this paper. The extensions of these solutions to the visco...Analytical solutions for the rotating variable-thickness inhomogeneous, orthotropic, hollow cylinders under plane strain assumption are developed in Part I of this paper. The extensions of these solutions to the viscoelastic case are discussed here. The method of effective moduli and Illyushin's approximation method are used for this purpose. The rotating fiber-reinforced viscoelastic homogeneous isotropic hollow cylinders with uniform thickness are obtained as special cases of the studied problem. Numerical application examples are given for the dimensionless displacement of and stresses in the different cylinders. The influences of time, constitutive parameter and elastic properties on the stresses and displacement are investigated.展开更多
In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite el...In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite element method (SBFEM), which is a novel semi-analytical method with the advantages of combining the finite element method (FEM) with the boundary element method (BEM). The whole solution domain is divided into one unbounded sub-domain and one bounded sub-domain by the exterior cylinder. By weakening the governing differential equation in the circumferential direction, the SBFEM equations for both domains can be solved analytically in the radial direction. Only the boundary on the circumference of the exterior porous cylinder is discretized with curved surface finite elements. Meanwhile, by introducing a variable porous-effect parameter G, non-homogeneous materials caused by the complex configuration of the exterior cylinder are modeled without additional efforts. Comparisons clearly demonstrate the excellent accuracy and computational efficiency associated with the present SBFEM. The effects of the wide range wave parameters and the structure configuration are examined. This parametric study will help determine the various hydrodynamic effects of the concentric porous cylindrical structure.展开更多
In this paper, an analytical solution for the rotation problem of an inhomogeneous hollow cylinder with variable thickness under plane strain assumption is developed. The present cylinder is made of a fiber-reinforced...In this paper, an analytical solution for the rotation problem of an inhomogeneous hollow cylinder with variable thickness under plane strain assumption is developed. The present cylinder is made of a fiber-reinforced viscoelastic inhomogeneous orthotropic material. The thickness of the cylinder is taken as parabolic function in the radial direction. The elastic properties varies in the same manner as the thickness of the cylinder while the density varies according to an exponential law form. The inner and outer surfaces of the cylinder are considered to have combinations of free and clamped boundary conditions. Analytical solutions are given according to different types of the hollow cylinders. An extension of the present solutions to the viscoelastic ones and some applications are investigated in Part II.展开更多
The purpose of this paper is to propose a sound localization method as an alternative of the time-resolved particle image velocimetry (PIV) system for detecting the aerodynamic sound source of a circular cylinder in a...The purpose of this paper is to propose a sound localization method as an alternative of the time-resolved particle image velocimetry (PIV) system for detecting the aerodynamic sound source of a circular cylinder in a uniform flow. The sound source intensity of a circular cylinder in a uniform flow is evaluated by measuring the time-derivative of instantaneous velocity field in the flow field using a pair of planar PIV system. It allows the visualization of the sound source intensity distribution, which is the time-derivative of the vector product of vorticity and velocity. The experimental results indicate that the aerodynamic sound is generated from the separation point and the velocity fluctuation in the separating shear layer from the circular cylinder. These results agree qualitatively with the previous findings from experiment and numerical simulation, which supports the validity of the present experimental method for evaluating the sound source intensity distribution.展开更多
This article investigates the movement trajectory of the cotton particle from Point D of belt transporter of the saw gin camera to Point B of the saw cylinder. In other words, the forces acting on the cotton particle ...This article investigates the movement trajectory of the cotton particle from Point D of belt transporter of the saw gin camera to Point B of the saw cylinder. In other words, the forces acting on the cotton particle and the equations of their interactions are developed, where, the differential equation of the law of movement of the cotton particle “belt + saw” is made according to the d’Alembert principle. Arc-BD of cotton particle gives the length of the arc of their fall on the saw teeth. The maximum separation of fibers and the quality of separation of fiber from seeds, as well as the time (t) of rapid separation of fiber from seeds, depend on the length of the arc-BD, because the critical length of the arc-BD makes it possible to reduce the multi-layering of the falling cotton particle on the saw teeth. In this scientific research work, patented by the new working camera of the saw gin, the trajectories of the movement of the cotton particles along the arc-DB, as well as the trajectory of the move in the direction of the grate are studied. The results of the study show that the number of fibers increases along the height of the teeth of the saw with one touch. This leads to a decrease in the average stay of seeds in the working chamber of the gin. As a result, the efficiency of the saw gin is increased.展开更多
This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of...This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of water and ethylene glycol, with volumetric proportions of (50:50) considered. Convective boundary constraints and modified Fourier law are implemented in heat transmission assessment. The mathematical flow model is formulated in the form of PDEs and is transformed into ODEs via similarity transformation. Numerical outcomes will be obtained with the use of the bvp4c technique and will be displayed with the help of graphs and tables. The results show that the surface drag coefficient is enhanced in the case of aggregation of nanoparticles whereas heat transfer rate is enhanced in the non-aggregation effect of nanoparticles. Furthermore, the temperature distribution enhances the increasing values of particle volume fraction in the case of aggregation effects of nanoparticles whereas temperature distribution lowers in the case of non-aggregation effect of nanoparticles. .展开更多
In this paper, the measurement of an aerodynamic sound source for a semi-circular cylinder in a uniform flow is described using Particle Image Velocimetry (PIV). This experimental technique is based on vortex sound th...In this paper, the measurement of an aerodynamic sound source for a semi-circular cylinder in a uniform flow is described using Particle Image Velocimetry (PIV). This experimental technique is based on vortex sound theory, where the time derivative of vorticity is evaluated with the aid of two sets of standard PIV systems. The experimental results indicate that the sound source for the semi-circular cylinder is located around the shear layer near the edge of the semi-circular cylinder. The sound source intensity and the area are reduced in the semi-circular cylinder compared with those of a circular cylinder. This result indicates that the aerodynamic sound of the semi- circular cylinder is smaller than that of the circular cylinder, which supports the microphone measurement result.展开更多
This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the...This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.展开更多
Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural f...Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural forms are shown,including the traditional smooth cylinder(P0),and the Terebridae-inspired cylinder with the helical angle of 30°(P_(30)),60°(P_(60)),and 90°(P_(90)).Computational fluid dynamics(CFD)method is adopted to solve the flow pass the Terebridae-inspired structures,and the vibration equation is solved using the Newmark-βmethod.The results show that for P_(30),P_(60) and P_(90),the VIV responses are effectively suppressed in the lock-in region,and P_(60) showed the best VIV suppression performance.The transverse amplitude and the downstream amplitude can be reduced by 82.67%and 91.43%respectively for P_(60) compared with that for P0,and the peak of the mean-drag coefficient is suppressed by 53.33%.The Q-criterion vortices of P_(30),P_(60),and P_(90) are destroyed,with irregular vortices shedding.It is also found that the boundary layer separation is located on the Terebridae-inspired ribs.The twisted ribs cause the separation point to constantly change along the spanwise direction,resulting in the development of the boundary layer separation being completely destroyed.The strength of the wake flow is significantly weakened for the Terebridae-inspired cylinder.展开更多
文摘The fluid fluctuating velocity equations which include the term of cylinder particles were established. The turbulent intensity and Reynolds stress of fluid were obtained by averaging fluctuating velocity based on the solution of the fluctuating velocity equations. Above approach was used to solve the channel turbulent flows, and computational results were compared with the experimental ones for the case of single phase flow. The effects of volume fraction of particles, the ratio of particle length to diameter and the particle relaxation time on turbulent properties were illustrated by changing cylinder particle parameters. It is shown that particles play a restraining role to turbulent properties in the flows. The degree of restraint is directly proportional to the volume fraction of particle, the ratio of particle length to diameter and inversely proportional to particle relaxation time.
基金funded by the National Natural Science Foundation of China(grant No.52205172 and 52075489)the Natural Science Foundation of Zhejiang Province of China(grant No.LY23E050015)the Basic Public Welfare Research Program of Zhejiang Province(grant No.LGG20E050017).
文摘The coarse-grained discrete element method(DEM)is probably a feasible option for simulating an actual drum-type biomass boiler,which contains over 10 million cylinder particles.A multi-level study was conducted based on particle and coarse-grained level data to evaluate the adequacy of the coarse-grained approach in terms of geometrical characteristics,kinematic features,and dynamic properties.Two scaling laws for contact parameters were used and compared during the simulations.The results show that the coarse-grained approach can accurately predict the positions of the free surface and active-passive interface,the mixing index,and the orientation properties.Deviations in the velocity fields may occur due to the worse flowability of coarse-grained particles near the free surface.The efficiency is significantly improved by the coarse-grained model compared with the corresponding original case(the same DEM code without a coarse-grained model was used for the original simulations).
文摘-Based on the extended Morison Equation and model tests, the in-line forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in detail in this paper. The hydrodynamic coefficient CD and Cu related to KC number and the effect of direction of wave incidence are also given, which can be used in engineering practice.
文摘Based on model tests, the lift and resultant forces on small square cylinders caused by waves (regular and irregular) and currents are analyzed in this paper. The lift and resultant force coefficients CL and Cf related to KC number and the effect of direction of wave propagation are also given, which may be useful for practical engineering application.
文摘Digital factory technology is an advanced manufacturing technology served as to establish a bridge between the process of product development and manufacturing.In terms of application for digital factory technology in machining,especially in machining of a complicated part such as a cylinder body part,a concept of digital process planning and its framework are proposed.Its components including machining domain knowledge model,machining knowledge base,machining resource base and process planning system are studied.A machining knowledge model in tree form and an object-driven knowledge reasoning mechanism are used for machining knowledge base.The process planning system is a user interface that leads a planner to finish the planning process.A case about a cylinder head part is given to demonstrate how the platform works.The framework of digital process planning is the foundation of some intelligent CAPP systems and helps to production line planning.
文摘Suppose that the motion of the water is produced by the small amplitude periodic motion of a partially immersed cylinder and the water is incompressible, inviscid and irrotational. We denote by C the wetted curve of the cylinder cross section. Let the coordinate axis ox be along the undisturbed free surface and let oy lie in the C plane, be vertical and point downward to the water. Let the origin o be at the center of the x-axis within the cylinder cross section. We denote by a the distance between the origin and the intersection point of the curve C and the x-axis. We may use the velocity potential φ(x, y) exp (—iωt) to describe the motion of the water with angular frequency to in the half-plane y>0. Then, φ(x, y) satisfies the following
基金Supported by Nation Youth Science Foundation of China(Grant No.51505315)Collaboration Innovation Center of Taiyuan Heavy Machinery Equipment and Shanxi Provincial Natural Science Foundation of China(Grant No.201701D221135)Innovative Project of Graduate Education in Shanxi Province of China(Grant No.2016BY132)
文摘When an output curve force is applied to a horizontal servo cylinder with a heavy load, the piston rod bears a dynamic partial load based on the installation and load characteristics, which significantly a ects the frequency response and control accuracy of the servo cylinder. Based on this partial load, increased friction can lead to cylinder bore scu ng, leakage, lack of output power, or even system failure. In this paper, a novel asymmetric static-pressure support structure is proposed based on the principle of hydrostatic support. The radial component force of a dynamic partial load is balanced by cooperation between the support oil cushion of the variable hydraulic pressure support structure, oil cushion of the supportive force, and the damper. Adaptive control of the servo cylinder piston rod, guide sleeve, and piston, as well as the cylinder oil film friction between lubricated surfaces is achieved. In this paper, theoretical design and analysis of the traditional hydrostatic bearing structure and novel structure are presented. A hydraulic dynamic shear scissor is used as a research target to derive a structural dynamic model. Comparative simulations are performed using Matlab Simulink. Additionally, flow field analysis of the novel structure is performed, which verifies the rationality and feasibility of the proposed structure and system.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.U2106223,51979193,52301352)。
文摘The fatigue damage caused by flow-induced vibration(FIV)is one of the major concerns for multiple cylindrical structures in many engineering applications.The FIV suppression is of great importance for the security of many cylindrical structures.Many active and passive control methods have been employed for the vibration suppression of an isolated cylinder undergoing vortex-induced vibrations(VIV).The FIV suppression methods are mainly extended to the multiple cylinders from the vibration control of the isolated cylinder.Due to the mutual interference between the multiple cylinders,the FIV mechanism is more complex than the VIV mechanism,which makes a great challenge for the FIV suppression.Some efforts have been devoted to vibration suppression of multiple cylinder systems undergoing FIV over the past two decades.The control methods,such as helical strakes,splitter plates,control rods and flexible sheets,are not always effective,depending on many influence factors,such as the spacing ratio,the arrangement geometrical shape,the flow velocity and the parameters of the vibration control devices.The FIV response,hydrodynamic features and wake patterns of the multiple cylinders equipped with vibration control devices are reviewed and summarized.The FIV suppression efficiency of the vibration control methods are analyzed and compared considering different influence factors.Further research on the FIV suppression of multiple cylinders is suggested to provide insight for the development of FIV control methods and promote engineering applications of FIV control methods.
文摘The transition from an axisymmetric stationary flow to three-dimensional time-dependent flows is carefully studied in a vertical cylinder partially heated from the side, with the aspect ratio A = 2 and Prandtl number Pτ=0.021. The flow develops from the steady toroidal pattern beyond the first instability threshold, breaks the axisymmetric state at a Rayleigh number near 2000, and transits to standing or travelling azimuthal waves. A new result is observed that a slightly unstable flow pattern of standing waves exists and will transit to stable travelling waves after a long time evolution. The onset of oscillations is associated with a supercritical Hopf bifurcation in a system with O(2) symmetry.
基金This work was financially supported by the Marine Economic Development Subsidy Fund Project in Fujian Province of China(Grant No.FJHJF-L-2019-8)2020 Xiamen Youth Innovation Fund Project of China(Grant No.3502Z20206069).
文摘Large-scale interceptors constitute the main structure of offshore self-driven floating marine litter collection devices,and the structural stability of such interceptors under the action of waves directly influences the overall safety of the device.When the ratio of the diameter of a horizontal cylinder in such interceptors to the incident wavelength is larger than 0.25,the wave force can be calculated by using the diffraction theory,by considering the problem as that of the interaction between the waves and a partially immersed large-scale horizontal cylinder.In this study,an analytical approach to calculate the wave force on a partially immersed large-scale horizontal cylinder was formulated by using the stepwise approximation method.Physical model tests were conducted to investigate the effects of different factors(wave height,period,and immersion depth)on the wave force on a large-scale horizontal cylinder under conditions involving short-period waves.The results show that both horizontal and vertical wave forces on the cylinder increase as the wave height(immersion depth)increases in most cases.The vertical wave force decreases with the decrease of the period.For the horizontal wave force,it increases with the decrease of the period when the wavelength is larger than the diameter of the cylinder and decreases with the decrease of the period when the wavelength is smaller than the diameter of the cylinder.
基金The project supported by the National Natural Science Foundation of China
文摘The turbulent fluid and particle interaction in the turbulent boundary layer for cross how over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30 mu m similar to 60 mu m and 80 mu m similar to 150 mu m) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross how over a cylinder.
文摘Analytical solutions for the rotating variable-thickness inhomogeneous, orthotropic, hollow cylinders under plane strain assumption are developed in Part I of this paper. The extensions of these solutions to the viscoelastic case are discussed here. The method of effective moduli and Illyushin's approximation method are used for this purpose. The rotating fiber-reinforced viscoelastic homogeneous isotropic hollow cylinders with uniform thickness are obtained as special cases of the studied problem. Numerical application examples are given for the dimensionless displacement of and stresses in the different cylinders. The influences of time, constitutive parameter and elastic properties on the stresses and displacement are investigated.
基金supported by the State Key Program of the National Natural Science Foundation of China(Grant No.51138001)China-Germany joint research project(Grant No.GZ566)Open Research Fund Program of State Key Laboratory of Hydroscience and Engineering(Grant No.shlhse-2010-C-03)
文摘In this paper, based on the linear wave theory, the interaction of short-crested waves with a concentric dual cylindrical system with a partially porous outer cylinder is studied by using the scaled boundary finite element method (SBFEM), which is a novel semi-analytical method with the advantages of combining the finite element method (FEM) with the boundary element method (BEM). The whole solution domain is divided into one unbounded sub-domain and one bounded sub-domain by the exterior cylinder. By weakening the governing differential equation in the circumferential direction, the SBFEM equations for both domains can be solved analytically in the radial direction. Only the boundary on the circumference of the exterior porous cylinder is discretized with curved surface finite elements. Meanwhile, by introducing a variable porous-effect parameter G, non-homogeneous materials caused by the complex configuration of the exterior cylinder are modeled without additional efforts. Comparisons clearly demonstrate the excellent accuracy and computational efficiency associated with the present SBFEM. The effects of the wide range wave parameters and the structure configuration are examined. This parametric study will help determine the various hydrodynamic effects of the concentric porous cylindrical structure.
文摘In this paper, an analytical solution for the rotation problem of an inhomogeneous hollow cylinder with variable thickness under plane strain assumption is developed. The present cylinder is made of a fiber-reinforced viscoelastic inhomogeneous orthotropic material. The thickness of the cylinder is taken as parabolic function in the radial direction. The elastic properties varies in the same manner as the thickness of the cylinder while the density varies according to an exponential law form. The inner and outer surfaces of the cylinder are considered to have combinations of free and clamped boundary conditions. Analytical solutions are given according to different types of the hollow cylinders. An extension of the present solutions to the viscoelastic ones and some applications are investigated in Part II.
文摘The purpose of this paper is to propose a sound localization method as an alternative of the time-resolved particle image velocimetry (PIV) system for detecting the aerodynamic sound source of a circular cylinder in a uniform flow. The sound source intensity of a circular cylinder in a uniform flow is evaluated by measuring the time-derivative of instantaneous velocity field in the flow field using a pair of planar PIV system. It allows the visualization of the sound source intensity distribution, which is the time-derivative of the vector product of vorticity and velocity. The experimental results indicate that the aerodynamic sound is generated from the separation point and the velocity fluctuation in the separating shear layer from the circular cylinder. These results agree qualitatively with the previous findings from experiment and numerical simulation, which supports the validity of the present experimental method for evaluating the sound source intensity distribution.
文摘This article investigates the movement trajectory of the cotton particle from Point D of belt transporter of the saw gin camera to Point B of the saw cylinder. In other words, the forces acting on the cotton particle and the equations of their interactions are developed, where, the differential equation of the law of movement of the cotton particle “belt + saw” is made according to the d’Alembert principle. Arc-BD of cotton particle gives the length of the arc of their fall on the saw teeth. The maximum separation of fibers and the quality of separation of fiber from seeds, as well as the time (t) of rapid separation of fiber from seeds, depend on the length of the arc-BD, because the critical length of the arc-BD makes it possible to reduce the multi-layering of the falling cotton particle on the saw teeth. In this scientific research work, patented by the new working camera of the saw gin, the trajectories of the movement of the cotton particles along the arc-DB, as well as the trajectory of the move in the direction of the grate are studied. The results of the study show that the number of fibers increases along the height of the teeth of the saw with one touch. This leads to a decrease in the average stay of seeds in the working chamber of the gin. As a result, the efficiency of the saw gin is increased.
文摘This work aims to analyze the flow of electrically conducting MWCNTs-nanofluid over a stretching cylinder with the aggregation and non-aggregation effects of nanoparticles. The working fluid comprised a combination of water and ethylene glycol, with volumetric proportions of (50:50) considered. Convective boundary constraints and modified Fourier law are implemented in heat transmission assessment. The mathematical flow model is formulated in the form of PDEs and is transformed into ODEs via similarity transformation. Numerical outcomes will be obtained with the use of the bvp4c technique and will be displayed with the help of graphs and tables. The results show that the surface drag coefficient is enhanced in the case of aggregation of nanoparticles whereas heat transfer rate is enhanced in the non-aggregation effect of nanoparticles. Furthermore, the temperature distribution enhances the increasing values of particle volume fraction in the case of aggregation effects of nanoparticles whereas temperature distribution lowers in the case of non-aggregation effect of nanoparticles. .
文摘In this paper, the measurement of an aerodynamic sound source for a semi-circular cylinder in a uniform flow is described using Particle Image Velocimetry (PIV). This experimental technique is based on vortex sound theory, where the time derivative of vorticity is evaluated with the aid of two sets of standard PIV systems. The experimental results indicate that the sound source for the semi-circular cylinder is located around the shear layer near the edge of the semi-circular cylinder. The sound source intensity and the area are reduced in the semi-circular cylinder compared with those of a circular cylinder. This result indicates that the aerodynamic sound of the semi- circular cylinder is smaller than that of the circular cylinder, which supports the microphone measurement result.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52078010 and 52101321)the National Key Research and Development Program of China(Grant No.2022YFC3004300).
文摘This paper investigates the hydrodynamic characteristics of floating truncated cylinders undergoing horizontal and vertical motions due to earthquake excitations in the finite water depth.The governing equation of the hydrodynamic pressure acting on the cylinder is derived based on the radiation theory with the inviscid and incompressible assumptions.The governing equation is solved by using the method of separating variables and analytical solutions are obtained by assigning reasonable boundary conditions.The analytical result is validated by a numerical model using the exact artificial boundary simulation of the infinite water.The main variation and distribution characteristics of the hydrodynamic pressure acting on the side and bottom of the cylinder are analyzed for different combinations of wide-height and immersion ratios.The added mass coefficient of the cylinder is calculated by integrating the hydrodynamic pressure and simplified formulas are proposed for engineering applications.The calculation results show that the simplified formulas are in good agreement with the analytical solutions.
基金supported by the Joint Postdoc Scheme with Non-local Institutions of the Hong Kong Polytechnic University(Grant No.1-YY4P).
文摘Biomimetic design has recently received widespread attention.Inspired by the Terebridae structure,this paper provides a structural form for suppressing vortex-induced vibration(VIV)response.Four different structural forms are shown,including the traditional smooth cylinder(P0),and the Terebridae-inspired cylinder with the helical angle of 30°(P_(30)),60°(P_(60)),and 90°(P_(90)).Computational fluid dynamics(CFD)method is adopted to solve the flow pass the Terebridae-inspired structures,and the vibration equation is solved using the Newmark-βmethod.The results show that for P_(30),P_(60) and P_(90),the VIV responses are effectively suppressed in the lock-in region,and P_(60) showed the best VIV suppression performance.The transverse amplitude and the downstream amplitude can be reduced by 82.67%and 91.43%respectively for P_(60) compared with that for P0,and the peak of the mean-drag coefficient is suppressed by 53.33%.The Q-criterion vortices of P_(30),P_(60),and P_(90) are destroyed,with irregular vortices shedding.It is also found that the boundary layer separation is located on the Terebridae-inspired ribs.The twisted ribs cause the separation point to constantly change along the spanwise direction,resulting in the development of the boundary layer separation being completely destroyed.The strength of the wake flow is significantly weakened for the Terebridae-inspired cylinder.