Engine tests are both costly and time consuming in developing a new internal combustion engine.Therefore,it is of great importance to predict engine characteristics with high accuracy using artificial intelligence.Thu...Engine tests are both costly and time consuming in developing a new internal combustion engine.Therefore,it is of great importance to predict engine characteristics with high accuracy using artificial intelligence.Thus,it is possible to reduce engine testing costs and speed up the engine development process.Deep Learning is an effective artificial intelligence method that shows high performance in many research areas through its ability to learn high-level hidden features in data samples.The present paper describes a method to predict the cylinder pressure of a Homogeneous Charge Compression Ignition(HCCI)engine for various excess air coefficients by using Deep Neural Network,which is one of the Deep Learning methods and is based on the Artificial Neural Network(ANN).The Deep Learning results were compared with the ANN and experimental results.The results show that the difference between experimental and the Deep Neural Network(DNN)results were less than 1%.The best results were obtained by Deep Learning method.The cylinder pressure was predicted with a maximum accuracy of 97.83%of the experimental value by using ANN.On the other hand,the accuracy value was increased up to 99.84%using DNN.These results show that the DNN method can be used effectively to predict cylinder pressures of internal combustion engines.展开更多
In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrast...In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT- Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy.展开更多
Efficiency and emissions of spark-ignited engines are significantly affected by combustion phase which can usually be indicated by crank angle of 50% mass burnt (CA50). Managing combustion phase at the optimal value...Efficiency and emissions of spark-ignited engines are significantly affected by combustion phase which can usually be indicated by crank angle of 50% mass burnt (CA50). Managing combustion phase at the optimal value at which the maximal efficiency can be achieved is a challenging issue due to the cyclic variations of combustion process. This paper addresses this issue in two loops: CA50 set-point optimization (outer loop) and set-point tracking (inner loop) by controlling spark advance (SA). Extremum seeking approach maximizing thermal efficiency is employed in the CA50 set-point optimization. A proportional- integral (PI) controller is adopted to make the moving average value of CA50 tracking the optimal CA50 set-point determined in the outer loop. Moreover, in order to obtain fast responses at steady and transient operations, feed-forward maps are designed for extremum seeking controller and PI controller, respectively. Finally, experimental validations are conducted on a six-cylinder gasoline at steady and transient operations to show the effectiveness of proposed control scheme.展开更多
According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surf...According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surfaces of cylinder. When borderline condition that is predigested according to the Saint-Venant's theory is joined, an equation suit is constructed which meets both the biharmonic equations and the boundary conditions. Furthermore, its analytic solution is deduced with Matlab. When this theory is applied to hydraulic bulging rollers, the experimental results inosculate with the theoretic calculation. Simultaneously, the limit along the axis invariable direction is given and the famous Lame solution can be induced from this limit. The above work paves the way for mathematic model building of hollow cylinder and for the analytic solution of hollow cvlinder with randomly uneven pressure.展开更多
The retrofit on flow path of low pressure cylinder of domestic made 200 MW steam turbine undertaken by Longwei Power Generation Technology Service Company Ltd by using Westinghouse technology was successful for the fi...The retrofit on flow path of low pressure cylinder of domestic made 200 MW steam turbine undertaken by Longwei Power Generation Technology Service Company Ltd by using Westinghouse technology was successful for the first time on the No. 5 unit of Zhenhai Prover Plant. Zhejiang Province. The test carried out by the Xi’an Thermal Power Research Institute showed that the thermal efficiency after the retrofit展开更多
One of the design methods for closing the end of a pressure cylinder is to screw down a screw plug on the threaded end of the cylinder. In this case, there is the problem of stress concentration in the threaded end of...One of the design methods for closing the end of a pressure cylinder is to screw down a screw plug on the threaded end of the cylinder. In this case, there is the problem of stress concentration in the threaded end of the pressure cylinder. To solve the problem, it is necessary to know accurately the load distribution on the threaded end of the cylinder. To find the load distribution on the threaded end of the pressure cylinder engaged with the screw plug, the following experiments are carried out. Applying the tensile load between the screw plug and the pressure cylinder and regarding the situation above as equivalent to the situation in which the internal pressure is applied, the load distribution is measured with the strain gauge. The influence of thread pitch on the load distribution on the threaded end of the cylinder is presented and an optimum pitch for design is discussed.展开更多
The paper provides a comprehensive scheme for assessment of the residual service life and extension of operating life of steam turbine rotors with expired fleet service life.The residual service life of high temperatu...The paper provides a comprehensive scheme for assessment of the residual service life and extension of operating life of steam turbine rotors with expired fleet service life.The residual service life of high temperature rotors for high&intermediate pressure cylinders of K-200-130-3 steam turbine without heat grooves calculated and it was showed that the residual service life of high&intermediate pressure rotors without grooves has been extended as compared to the K-200-130-1 turbine rotors with grooves.Also residual life management by supplying hot steam to the HPC and 1PC seals was investigated and it was noted their significant impact on the residual service life.展开更多
For better controllability in actuations,it is desirable to create Functionally Graded Shape Memory Alloys(FG-SMAs)in the actuation direction.It can be achieved by applying different heat treatment processes to crea...For better controllability in actuations,it is desirable to create Functionally Graded Shape Memory Alloys(FG-SMAs)in the actuation direction.It can be achieved by applying different heat treatment processes to create the gradient along the radius of a SMA cylinder.Analytical solutions are derived to predict the macroscopic behaviors of such a functionally graded SMA cylinder.The Tresca yield criterion and linear hardening are used to describe the different phase transformations with different gradient parameters.The numerical results for an example of the model exhibit different pseudo-elastic behaviors from the non-gradient case,as well as a variational hysteresis loop for the transformation,providing a mechanism for easy actuation control.When the gradient disappears,the model can degenerate to the non-gradient case.展开更多
Renewable fuels have many advantages over fossil fuels because they are biodegradable and sustainable,and help mitigate social and environmental problems.The objective of the present study is to evaluate the performan...Renewable fuels have many advantages over fossil fuels because they are biodegradable and sustainable,and help mitigate social and environmental problems.The objective of the present study is to evaluate the performance,combustion,and emission characteristics of a compression–ignition engine using hydrogen compressed natural gas(HCNG)-enriched Kusum seed biodiesel blend(KSOBD20).The flow rate of HCNG was set at 5 L/min,10 L/min,and 15 L/min,and the injection pressure was varied in the range of 180 bar to 240 bar.Brake thermal efficiency(BTE)and brake-specific fuel consumption(BSFC)were improved when HCNG was added to the KSOBD20.Combustion characteristics,namely,cylinder pressure(CP)and net heat release rate(NHRR),were also improved.Emissions of carbon monoxide(CO),hydrocarbons(HC),and smoke were also reduced,with the exception of nitrogen oxides(NO_(x)).The higher injection pressure(240 bar)had a positive effect on the operating characteristics.At an injection pressure of 240 bar,for KSOB20+15 L/min HCNG,the highest BTE and the lowest BSFC were found to be 32.09%and 0.227 kg/kWh,respectively.Also,the CP and NHRR were 69.34 bar and 66.04 J/°.CO,HC,and smoke levels were finally reduced to 0.013%,47×10^(-6)and 9%,respectively,with NO_(x)levels at 1623×10^(-6).For optimum results in terms of engine characteristics,the fuel combination KSOBD20+15 L/min HCNG at FIP 240 bar is recommended.展开更多
文摘Engine tests are both costly and time consuming in developing a new internal combustion engine.Therefore,it is of great importance to predict engine characteristics with high accuracy using artificial intelligence.Thus,it is possible to reduce engine testing costs and speed up the engine development process.Deep Learning is an effective artificial intelligence method that shows high performance in many research areas through its ability to learn high-level hidden features in data samples.The present paper describes a method to predict the cylinder pressure of a Homogeneous Charge Compression Ignition(HCCI)engine for various excess air coefficients by using Deep Neural Network,which is one of the Deep Learning methods and is based on the Artificial Neural Network(ANN).The Deep Learning results were compared with the ANN and experimental results.The results show that the difference between experimental and the Deep Neural Network(DNN)results were less than 1%.The best results were obtained by Deep Learning method.The cylinder pressure was predicted with a maximum accuracy of 97.83%of the experimental value by using ANN.On the other hand,the accuracy value was increased up to 99.84%using DNN.These results show that the DNN method can be used effectively to predict cylinder pressures of internal combustion engines.
基金supported by the National Natural Science Foundation of China(Grant No.61304197)the Scientific and Technological Talents of Chongqing,China(Grant No.cstc2014kjrc-qnrc30002)+2 种基金the Key Project of Application and Development of Chongqing,China(Grant No.cstc2014yykf B40001)the Natural Science Funds of Chongqing,China(Grant No.cstc2014jcyj A60003)the Doctoral Start-up Funds of Chongqing University of Posts and Telecommunications,China(Grant No.A2012-26)
文摘In transportation cyber-physical-systems (T-CPS), vehicle-to-vehicle (V2V) communications play an important role in the coordination between individual vehicles as well as between vehicles and the roadside infrastructures, and engine cylinder pressure is significant for engine diagnosis on-line and torque control within the information exchange process under V2V communications. However, the parametric uncertainties caused from measurement noise in T-CPS lead to the dynamic performance deterioration of the engine cylinder pressure estimation. Considering the high accuracy requirement under V2V communications, a high gain observer based on the engine dynamic model is designed to improve the accuracy of pressure estimation. Then, the analyses about convergence, converge speed and stability of the corresponding error model are conducted using the Laplace and Lyapunov method. Finally, results from combination of Simulink with GT- Power based numerical experiments and comparisons demonstrate the effectiveness of the proposed approach with respect to robustness and accuracy.
文摘Efficiency and emissions of spark-ignited engines are significantly affected by combustion phase which can usually be indicated by crank angle of 50% mass burnt (CA50). Managing combustion phase at the optimal value at which the maximal efficiency can be achieved is a challenging issue due to the cyclic variations of combustion process. This paper addresses this issue in two loops: CA50 set-point optimization (outer loop) and set-point tracking (inner loop) by controlling spark advance (SA). Extremum seeking approach maximizing thermal efficiency is employed in the CA50 set-point optimization. A proportional- integral (PI) controller is adopted to make the moving average value of CA50 tracking the optimal CA50 set-point determined in the outer loop. Moreover, in order to obtain fast responses at steady and transient operations, feed-forward maps are designed for extremum seeking controller and PI controller, respectively. Finally, experimental validations are conducted on a six-cylinder gasoline at steady and transient operations to show the effectiveness of proposed control scheme.
文摘According to the inverse solution of elasticity mechanics, a stress function is constructed which meets the space biharmonic equation, this stress functions is about cubic function pressure on the inner and outer surfaces of cylinder. When borderline condition that is predigested according to the Saint-Venant's theory is joined, an equation suit is constructed which meets both the biharmonic equations and the boundary conditions. Furthermore, its analytic solution is deduced with Matlab. When this theory is applied to hydraulic bulging rollers, the experimental results inosculate with the theoretic calculation. Simultaneously, the limit along the axis invariable direction is given and the famous Lame solution can be induced from this limit. The above work paves the way for mathematic model building of hollow cylinder and for the analytic solution of hollow cvlinder with randomly uneven pressure.
文摘The retrofit on flow path of low pressure cylinder of domestic made 200 MW steam turbine undertaken by Longwei Power Generation Technology Service Company Ltd by using Westinghouse technology was successful for the first time on the No. 5 unit of Zhenhai Prover Plant. Zhejiang Province. The test carried out by the Xi’an Thermal Power Research Institute showed that the thermal efficiency after the retrofit
文摘One of the design methods for closing the end of a pressure cylinder is to screw down a screw plug on the threaded end of the cylinder. In this case, there is the problem of stress concentration in the threaded end of the pressure cylinder. To solve the problem, it is necessary to know accurately the load distribution on the threaded end of the cylinder. To find the load distribution on the threaded end of the pressure cylinder engaged with the screw plug, the following experiments are carried out. Applying the tensile load between the screw plug and the pressure cylinder and regarding the situation above as equivalent to the situation in which the internal pressure is applied, the load distribution is measured with the strain gauge. The influence of thread pitch on the load distribution on the threaded end of the cylinder is presented and an optimum pitch for design is discussed.
文摘The paper provides a comprehensive scheme for assessment of the residual service life and extension of operating life of steam turbine rotors with expired fleet service life.The residual service life of high temperature rotors for high&intermediate pressure cylinders of K-200-130-3 steam turbine without heat grooves calculated and it was showed that the residual service life of high&intermediate pressure rotors without grooves has been extended as compared to the K-200-130-1 turbine rotors with grooves.Also residual life management by supplying hot steam to the HPC and 1PC seals was investigated and it was noted their significant impact on the residual service life.
基金the financial support of National Natural Science Foundation of China (no.11502284, 51505483, 11772041)the Fundamental Research Funds for the Central Universities (3122016C006) of China
文摘For better controllability in actuations,it is desirable to create Functionally Graded Shape Memory Alloys(FG-SMAs)in the actuation direction.It can be achieved by applying different heat treatment processes to create the gradient along the radius of a SMA cylinder.Analytical solutions are derived to predict the macroscopic behaviors of such a functionally graded SMA cylinder.The Tresca yield criterion and linear hardening are used to describe the different phase transformations with different gradient parameters.The numerical results for an example of the model exhibit different pseudo-elastic behaviors from the non-gradient case,as well as a variational hysteresis loop for the transformation,providing a mechanism for easy actuation control.When the gradient disappears,the model can degenerate to the non-gradient case.
文摘Renewable fuels have many advantages over fossil fuels because they are biodegradable and sustainable,and help mitigate social and environmental problems.The objective of the present study is to evaluate the performance,combustion,and emission characteristics of a compression–ignition engine using hydrogen compressed natural gas(HCNG)-enriched Kusum seed biodiesel blend(KSOBD20).The flow rate of HCNG was set at 5 L/min,10 L/min,and 15 L/min,and the injection pressure was varied in the range of 180 bar to 240 bar.Brake thermal efficiency(BTE)and brake-specific fuel consumption(BSFC)were improved when HCNG was added to the KSOBD20.Combustion characteristics,namely,cylinder pressure(CP)and net heat release rate(NHRR),were also improved.Emissions of carbon monoxide(CO),hydrocarbons(HC),and smoke were also reduced,with the exception of nitrogen oxides(NO_(x)).The higher injection pressure(240 bar)had a positive effect on the operating characteristics.At an injection pressure of 240 bar,for KSOB20+15 L/min HCNG,the highest BTE and the lowest BSFC were found to be 32.09%and 0.227 kg/kWh,respectively.Also,the CP and NHRR were 69.34 bar and 66.04 J/°.CO,HC,and smoke levels were finally reduced to 0.013%,47×10^(-6)and 9%,respectively,with NO_(x)levels at 1623×10^(-6).For optimum results in terms of engine characteristics,the fuel combination KSOBD20+15 L/min HCNG at FIP 240 bar is recommended.