Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtos...Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.展开更多
We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated ...We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated dark holes, whose number just equals the topological charge of the input beam. This conclusion is then verified via experiments and numerical simulations of the propagation of vortex beams with multiple singulaxities. This method is also reliable to measure the topological charges of broadband vortex beams with different distributions of singularities, which does not resort to multiple beam interferometrie experiments.展开更多
For the narrowband of liner charge-coupled device (CCD) receiver and the imaging rule that cylindrical lens system can compress round facula into narrow and long one, the system is simplified and light force can con...For the narrowband of liner charge-coupled device (CCD) receiver and the imaging rule that cylindrical lens system can compress round facula into narrow and long one, the system is simplified and light force can concentrate on a strip facula, Considered the effective CCD length and selection of lens parameters, the system can be optimized. Correspondingly to the CCD pixels, the ray is composed of much angle information. By widening the parallel ray or increasing the lens aperture, luminous flux can be ensured when oblique incidence. Meanwhile, the effective working range can also be improved. Based on the experimental data, cylindrical system could be applied in accurate angle measurement. It has been proved feasible that the cylindrical system can be used in anchor behavior study for liquid crystal (LC) case. The low-power He-Ne laser cylindrical system can carry out the previous effect in high power laser spherical system.展开更多
Ray tracing method is used to study the propagation of collimated beams in a liquid-core cylindrical lens(LCL),which has dual functions of diffusion cell and image formation.The diffusion images on the focal plane of ...Ray tracing method is used to study the propagation of collimated beams in a liquid-core cylindrical lens(LCL),which has dual functions of diffusion cell and image formation.The diffusion images on the focal plane of the used LCL are simulated by establishing and solving both linear and nonlinear ray equations,the calculated results indicate that the complex imaging results of LCL in inhomogeneous media can be treated by the law of ray propagation in homogeneous media under the condition of small refractive index gradient of diffusion solution.Guided by the calculation conditions,the diffusion process of triethylene glycol aqueous solution is experimentally studied at room temperature by using the LCL in this paper.The spatial and temporal concentration profile Ce(z,t)of diffusion solution is obtained by analyzing diffusion image appearing on the focal plane of the LCL;Then,the concentration-dependent diffusion coefficient is assumed to be a polynomial D(C)=D0×(1+α1C+α2C2+α3C3+…).The finite difference method is used to solve the Fick diffusion equation for calculating numerically the concentration profiles Cn(z,t).The D(C)of triethylene glycol aqueous solution is obtained by comparing the Cn(z,t)with Ce(z,t).Finally,the obtained polynomial D(C)is used to calculate the refractive index profiles nn(z,t)s of diffusion solution in the used LCL.Based on the ray propagation law in inhomogeneous media and the calculated n(z,t),the ray tracing method is used again to simulate the dynamic images of the whole experimental diffusion process to varify the correctness of the calculated D(C).The method presented in this work opens up a new way for both measuring and verifying the concentration-dependent liquid diffusion coefficients.展开更多
Background Augmen ted reality(AR)smartglasses are considered as the next generation of smart devices to replace mobile phones,and are widely concerned.But at present,AR smartglasses are usually designed according to t...Background Augmen ted reality(AR)smartglasses are considered as the next generation of smart devices to replace mobile phones,and are widely concerned.But at present,AR smartglasses are usually designed according to the human normal eyes.In order to experience AR smartglasses perfectly,abnormal eye users must first wear diopters.Methods For people with astigmatism to use AR smartglasses without wearing a diopter lens,a cylindrical lens waveguide grating is designed in this study based on the principle of holographic waveguide grating.First,a cylindrical lens waveguide substrate is constructed for external light deflection to satisfy the users'normal viewing of the real world.Further,a variable period grating structure is established based on the cylindrical lens waveguide substrate to normally emit the light from the virtual world in the optical machine to the human eyes.Finally,the structural parameters of grating are optimized to improve the diffraction efficiency.Results The results show that the structure of cylindrical lens waveguide grating allows people with astigmatism to wear AR smartglasses directly.The total light utilization rate reaches 90%with excellent imaging uniformity.The brightness difference is less than 0.92%and the vertical field of view is 10°.Conclusions This research serves as a guide for AR product designs for people with long/short sightedness and promotes the development of such products.展开更多
In the present study, a micro-scale solar organic Rankine cycle power generation system was developed. The system comprises of a solar collection system based on compound cylindrical Fresnel lens concentrator and an o...In the present study, a micro-scale solar organic Rankine cycle power generation system was developed. The system comprises of a solar collection system based on compound cylindrical Fresnel lens concentrator and an organic Rankine cycle power generation system integrated with a scroll expander. YD320 and R245 fa were used as the heat transfer fluid and the working fluid, respectively. The effects of the evaporation pressure, the degree of superheat, and the mass flow rate of the working fluid were analyzed to evaluate the solar collection efficiency, the electric power output, the thermal efficiency and exergy efficiency of the system. The results illustrate that both the increasing evaporation pressure and decreasing superheat degree have positive impacts on solar collection efficiency. The electric power increases as the evaporation pressure increases, while the thermal efficiency and the exergy efficiency decrease. However, the system overall efficiency decreases slowly due to the increase of solar collection efficiency. The electric power increases with the increment of the working fluid mass flow rate. The increasing mass flow rate has no visible impact on the thermal and exergy efficiencies of organic Rankine cycle subsystem, whereas a slightly increase of the thermal and exergy efficiencies of the integrated system. The electric power decreases with the increase of the superheat degree, whereas the thermal and the exergy efficiencies of the system increase. The system works more suitably with a higher degree of superheat for the small mass flow rate condition.展开更多
文摘Inhomogeneity and low efficiency are two important factors that limit the application of laser-induced periodic surface structures(LIPSSs),especially on glass surfaces.In this study,two-beam interference(TBI)of femtosecond lasers was used to produce large-area straight LIPSSs on fused silica using cylindrical lenses.Compared with those produced us-ing a single circular or cylindrical lens,the LIPSSs produced by TBI are much straighter and more regular.Depending on the laser fluence and scanning velocity,LIPSSs with grating-like or spaced LIPSSs are produced on the fused silica sur-face.Their structural colors are blue,green,and red,and only green and red,respectively.Grating-like LIPSS patterns oriented in different directions are obtained and exhibit bright and vivid colors,indicating potential applications in surface coloring and anti-counterfeiting logos.
基金Supported by the National Basic Research Program of China under Grant No 2012CB921900the National Natural Science Foundation of China under Grant Nos 61377035 and 11404264the Fundamental Research Funds for the Central Universities under Grant No 3102014JCQ01085
文摘We present a simple method to measure the topological charges of optical vortices with multiple singularities. Using a cylindrical lens, a vortex beam can decay into a light field distribution with multiple separated dark holes, whose number just equals the topological charge of the input beam. This conclusion is then verified via experiments and numerical simulations of the propagation of vortex beams with multiple singulaxities. This method is also reliable to measure the topological charges of broadband vortex beams with different distributions of singularities, which does not resort to multiple beam interferometrie experiments.
基金This project is supported by Natural Science and Research Foundation ofTsinghua University, China (No.JC2002039).
文摘For the narrowband of liner charge-coupled device (CCD) receiver and the imaging rule that cylindrical lens system can compress round facula into narrow and long one, the system is simplified and light force can concentrate on a strip facula, Considered the effective CCD length and selection of lens parameters, the system can be optimized. Correspondingly to the CCD pixels, the ray is composed of much angle information. By widening the parallel ray or increasing the lens aperture, luminous flux can be ensured when oblique incidence. Meanwhile, the effective working range can also be improved. Based on the experimental data, cylindrical system could be applied in accurate angle measurement. It has been proved feasible that the cylindrical system can be used in anchor behavior study for liquid crystal (LC) case. The low-power He-Ne laser cylindrical system can carry out the previous effect in high power laser spherical system.
基金the National Natural Science Foundation of China(Grant No.11804296)the Joint Key Project of Yunnan Province,China(Grant Nos.2018FY001-020 and 2018ZI002)the Fund from the Educational Department of Yunnan Province,China(Grant No.2016CYH05).
文摘Ray tracing method is used to study the propagation of collimated beams in a liquid-core cylindrical lens(LCL),which has dual functions of diffusion cell and image formation.The diffusion images on the focal plane of the used LCL are simulated by establishing and solving both linear and nonlinear ray equations,the calculated results indicate that the complex imaging results of LCL in inhomogeneous media can be treated by the law of ray propagation in homogeneous media under the condition of small refractive index gradient of diffusion solution.Guided by the calculation conditions,the diffusion process of triethylene glycol aqueous solution is experimentally studied at room temperature by using the LCL in this paper.The spatial and temporal concentration profile Ce(z,t)of diffusion solution is obtained by analyzing diffusion image appearing on the focal plane of the LCL;Then,the concentration-dependent diffusion coefficient is assumed to be a polynomial D(C)=D0×(1+α1C+α2C2+α3C3+…).The finite difference method is used to solve the Fick diffusion equation for calculating numerically the concentration profiles Cn(z,t).The D(C)of triethylene glycol aqueous solution is obtained by comparing the Cn(z,t)with Ce(z,t).Finally,the obtained polynomial D(C)is used to calculate the refractive index profiles nn(z,t)s of diffusion solution in the used LCL.Based on the ray propagation law in inhomogeneous media and the calculated n(z,t),the ray tracing method is used again to simulate the dynamic images of the whole experimental diffusion process to varify the correctness of the calculated D(C).The method presented in this work opens up a new way for both measuring and verifying the concentration-dependent liquid diffusion coefficients.
文摘Background Augmen ted reality(AR)smartglasses are considered as the next generation of smart devices to replace mobile phones,and are widely concerned.But at present,AR smartglasses are usually designed according to the human normal eyes.In order to experience AR smartglasses perfectly,abnormal eye users must first wear diopters.Methods For people with astigmatism to use AR smartglasses without wearing a diopter lens,a cylindrical lens waveguide grating is designed in this study based on the principle of holographic waveguide grating.First,a cylindrical lens waveguide substrate is constructed for external light deflection to satisfy the users'normal viewing of the real world.Further,a variable period grating structure is established based on the cylindrical lens waveguide substrate to normally emit the light from the virtual world in the optical machine to the human eyes.Finally,the structural parameters of grating are optimized to improve the diffraction efficiency.Results The results show that the structure of cylindrical lens waveguide grating allows people with astigmatism to wear AR smartglasses directly.The total light utilization rate reaches 90%with excellent imaging uniformity.The brightness difference is less than 0.92%and the vertical field of view is 10°.Conclusions This research serves as a guide for AR product designs for people with long/short sightedness and promotes the development of such products.
基金supported by the Beijing Municipal Natural Science Foundation,China(Grant No.3194057)
文摘In the present study, a micro-scale solar organic Rankine cycle power generation system was developed. The system comprises of a solar collection system based on compound cylindrical Fresnel lens concentrator and an organic Rankine cycle power generation system integrated with a scroll expander. YD320 and R245 fa were used as the heat transfer fluid and the working fluid, respectively. The effects of the evaporation pressure, the degree of superheat, and the mass flow rate of the working fluid were analyzed to evaluate the solar collection efficiency, the electric power output, the thermal efficiency and exergy efficiency of the system. The results illustrate that both the increasing evaporation pressure and decreasing superheat degree have positive impacts on solar collection efficiency. The electric power increases as the evaporation pressure increases, while the thermal efficiency and the exergy efficiency decrease. However, the system overall efficiency decreases slowly due to the increase of solar collection efficiency. The electric power increases with the increment of the working fluid mass flow rate. The increasing mass flow rate has no visible impact on the thermal and exergy efficiencies of organic Rankine cycle subsystem, whereas a slightly increase of the thermal and exergy efficiencies of the integrated system. The electric power decreases with the increase of the superheat degree, whereas the thermal and the exergy efficiencies of the system increase. The system works more suitably with a higher degree of superheat for the small mass flow rate condition.