AIM: To study the relationship between the cytotoxinassociated gene-A (CagA) status of H pylori strains and cerebral infarction among European Caucasians and Chinese Han by conducting a meta-analysis.METHODS: Ten ...AIM: To study the relationship between the cytotoxinassociated gene-A (CagA) status of H pylori strains and cerebral infarction among European Caucasians and Chinese Han by conducting a meta-analysis.METHODS: Ten case-control studies, with data on a total of 907 cases and 966 controls, were retrieved and considered; disqualified studies were excluded. The included studies were then tested for heterogeneity, and a meta-analysis was performed.RESULTS: The combined data revealed CagA-bearing strains of Hpylori which cause chronic infection are associated with an increased risk of cerebral infarction (OR = 2.66, 950 CI: 2.17-3.26), but no such relationship was found with CagA-negative strains (OR = 0.74, 95% CI: 0.49-1.10) in the overall population. We performed subgroup analyses, dividing the overall population into European Caucasians and Chinese Han subgroups, and analyzed the studies according to their subgroup classification. Through the subgroup analysis, an association between cerebral infarction and CagAbearing strains was found in both subgroups (OR = 2.60, 95% CI: 1.93-3.49 in Chinese Han; OR = 2.71, 95% CI: 2.05-3.59 in European Caucasians), but no significant association was found between cerebral infarction and CagA-negative strains (OR = 0.81, 95% CI: 0.45-1.48 in Chinese Han; OR = 0.64, 95% CI: 0.37-1.09 in European Caucasians).CONCLUSION: These results suggest CagA-bearing strains of H pylori are significantly associated with susceptibility to cerebral infarction in Chinese Han and European Caucasians, but that CagA-negative strains are not a definite predisposing factor in either subgroup. The magnitude of this association with cerebral infarction needs to be confirmed by prospective studies and combined studies of Hpylori eradication.展开更多
OBJECTIVE: To assess the role of cytotoxin-associated gene-A (CagA) positive strains of Helicobacter pylori (Hp) in ischemic stroke (IS) subtypes. DATA SOURCES: A computer-based online search of PubMed, EMBASE...OBJECTIVE: To assess the role of cytotoxin-associated gene-A (CagA) positive strains of Helicobacter pylori (Hp) in ischemic stroke (IS) subtypes. DATA SOURCES: A computer-based online search of PubMed, EMBASE, the Cochrane Collaboration database, the CNKI database and the VIP database, from January 1997 to July 2010, was performed to find relevant studies. DATA SELECTION: Case-control studies relevant to CagA with IS and IS subtypes were selected. Data regarding related factors in the case group and control group were acquired using the same approach. All patients had been diagnosed as exhibiting IS using skull CT or MRI, and were etiologically typed according to the 1993 TOAST diagnosis criteria. Two investigators independently performed the same search and study selection. Meta-analyses were then performed for the selected studies using RevMan 5.0 software (Cochrane Collaboration) after strict screening. Heterogeneity tests, sensitivity analyses and publication bias assessments were then conducted. MAIN OUTCOME MEASURES: Relationship of CagA with IS and IS subtypes. RESULTS: Eight studies were selected, involving data from 879 patients with IS, and 849 healthy controls. Five out of eight of the selected studies were related to large artery atherosclerosis (461 patients with IS and 497 health controls). The results of our meta-analysis revealed a significant association between prior infection with CagA-positive strains and increased risk of IS (odds ratio (OR) = 2.31,95% confidence interval (C/): 1.89-2.82, P 〈 0.01), In addition, we found an association between infection with CagA-negative strains and IS (OR = 0.57, 95%C1:0.47 0.70, P 〈 0.01). CagA positive and negative strains were found to correlate with large artery atherosclerosis (CagA-positive strains: OR = 2.87, 95%C/: 2.19-3.77, P 〈 0.01; CagA-negative strains: OR = 0.51, 95%CL 0.39 0.67, P 〈 0.01). Because of the diversity of etiological factors in the case-control study, we conducted further analyses after correcting for confounding factors, and the overall effects were recalculated. The results revealed significant relationships between CagA-positive strains and IS (OR = 2.36, 95%C1: 1.84-3.02, P 〈 0.01), and between CagA-positive strains and large artery atherosclerosis (OR = 3.10, 95%C1: 2.29-4.19, P 〈 0.01 ). A heterogeneity test of CagA-positive strains in IS and its subtypes revealed good homogeneity (f = 0%; f = 0%) and we adopted a fixed-effects model to calculate OR. Sensitivity analysis confirmed that the results of the meta-analysis were reliable. However, the funnel plot suggested that the experimental results may be affected by bias, possibly resulting from a lack of published studies reporting negative outcomes in the meta-analysis. CONCLUSION: Infection with CagA-positive strains is a risk factor for IS, especially the large artery atherosclerosis subtype. However, the evidence from case-control studies is weak, and more prospective studies are required to conclusively determine whether infection by CagA-positive strains should be considered a novel risk factor for IS and its subtypes.展开更多
Helicobacter pylori(H.pylori)infection might initiate and contribute to the progression of lymphoma from gastric mucosa-associated lymphoid tissue(MALT).Increasing evidence shows that eradication of H.pylori with anti...Helicobacter pylori(H.pylori)infection might initiate and contribute to the progression of lymphoma from gastric mucosa-associated lymphoid tissue(MALT).Increasing evidence shows that eradication of H.pylori with antibiotic therapy can lead to regression of gastric MALT lymphoma and can result in a 10-year sustained remission.The eradication of H.pylori is the standard care for patients with gastric MALT lymphoma.Cytotoxin-associated gene A(CagA)protein,one of the most extensively studied H.pylori virulence factors,is strongly associated with the gastric MALT lymphoma.CagA possesses polymorphisms according to its C-terminal structure and displays different functions among areas and races.After being translocated into B lymphocytes via typeⅣsecretion system,CagA deregulates intracellular signaling pathways in both tyrosine phosphorylation-dependent and-independent manners and/or some other pathways,and thereby promotes lymphomagenesis.A variety of proteins including p53and protein tyrosine phosphatases-2 are involved in the malignant transformation induced by CagA.Mucosal inflammation is the foundational mechanism underlying the occurrence and development of gastric MALT lymphoma.展开更多
BACKGROUND Approximately 90%of new cases of noncardiac gastric cancer(GC)are related to Helicobacter pylori(H.pylori),and cytotoxin-associated gene A(CagA)is one of the main pathogenic factors.Recent studies have show...BACKGROUND Approximately 90%of new cases of noncardiac gastric cancer(GC)are related to Helicobacter pylori(H.pylori),and cytotoxin-associated gene A(CagA)is one of the main pathogenic factors.Recent studies have shown that the pharmacological effects of cryptotanshinone(CTS)can be used to treat a variety of tumors.However,the effects of CTS on H.pylori,especially CagA+strain-induced gastric mucosal lesions,on the development of GC is unknown.AIM To assess the role of CTS in CagA-induced proliferation and metastasis of GC cells,and determine if CagA+H.pylori strains causes pathological changes in the gastric mucosa of mice.METHODS The effects of CTS on the proliferation of GC cells were assessed using the Cell Counting Kit-8(CCK-8)assay,and the abnormal growth,migration and invasion caused by CagA were detected by CCK-8 and transwell assays.After transfection with pSR-HA-CagA and treatment with CTS,proliferation and metastasis were evaluated by CCK-8 and transwell assays,respectively,and the expression of Src homology 2(SH2)domain–containing phosphatase 2(SHP2)and phosphorylated SHP2(p-SHP2)was detected using western blotting in AGS cells.The enzymelinked immunosorbent assay was used to determine the immunoglobulin G(IgG)level against CagA in patient serum.Mice were divided into four groups and administered H.pylori strains(CagA+or CagA-)and CTS(or PBS)intragastrically,and establishment of the chronic infection model was verified using polymerase chain reaction and sequencing of isolated strains.Hematoxylin and eosin staining was used to assess mucosal erosion in the stomach and toxicity to the liver and kidney.RESULTS CTS inhibited the growth of GC cells in dose-and time-dependent manners.Overexpression of CagA promoted the growth,migration,and invasion of GC cells.Importantly,we demonstrated that CTS significantly inhibited the CagAinduced abnormal proliferation,migration,and invasion of GC cells.Moreover,the expression of p-SHP2 protein in tumor tissue was related to the expression of IgG against CagA in the serum of GC patients.Additionally,CTS suppressed the protein expression levels of both SHP2 and p-SHP2 in GC cells.CTS suppressed CagA+H.pylori strain-induced mucosal erosion in the stomach of mice but had no obvious effects on the CagA-H.pylori strain group.CONCLUSION CTS inhibited CagA-induced proliferation and the epithelial-mesenchymal transition of GC cells in vitro,and CagA+H.pylori strains caused mucosal erosions of the stomach in vivo by decreasing the protein expression of SHP2.展开更多
Objective A systematic meta-analysis was performed to explore the role of cytotoxin-associated gene-A (CagA) seropositive strains of Helicobacter pylori (H. pylon) in the pathogenesis of atherosclerotic diseases. ...Objective A systematic meta-analysis was performed to explore the role of cytotoxin-associated gene-A (CagA) seropositive strains of Helicobacter pylori (H. pylon) in the pathogenesis of atherosclerotic diseases. Data sources Data from Medline, EMBASE, CBMdisc, CNKI and the Cochrane Collaboration database were searched. Similar search strategies were applied to each of these databases. Study selection The review was restricted to the case-control studies on infective, chronic virulent CagA strains of H. pylori, involving the risk of ischemic stroke and coronary heart disease, ineligible studies were excluded. Two reviewers independently extracted the data and assessed study quality. Results Totally 26 case-control studies (11 studies on ischemic stroke and 15 studies on coronary heart disease) were retrieved and considered. The combined data revealed that the chronic seropositive virulent strains of H. pylori infection had a trend of increasing the risk of ischemic strokes and coronary heart diseases, yielding pooled ORs of 2.68 (95% CI: 2.20, 3.27) and 2.11 (95% CI: 1.70, 2.62), respectively. We also performed subgroup analyses, dividing the total population into Caucasian and Chinese subgroups. Through the subgroup analysis, no significant difference was found between the subgroups. Conclusions Our results support the hypothesis that CagA-seropositive strains infection is significantly associated with susceptibility to ischemic strokes and coronary heart diseases. The magnitude of the association with atherosclerotic diseases needs to be confirmed by prospective studies and the studies on CagA-seropositive strains eradication are more important.展开更多
BACKGROUND Helicobacter pylori(H.pylori)persistently colonizes the human gastric mucosa in more than 50%of the global population,leading to various gastroduodenal diseases ranging from chronic gastritis to gastric car...BACKGROUND Helicobacter pylori(H.pylori)persistently colonizes the human gastric mucosa in more than 50%of the global population,leading to various gastroduodenal diseases ranging from chronic gastritis to gastric carcinoma.Cytotoxin-associated gene A(CagA)protein,an important oncoprotein,has highly polymorphic Glu-Pro-Ile-Tyr-Ala segments at the carboxyl terminus,which play crucial roles in pathogenesis.Our previous study revealed a significant association between amino acid deletions at positions 893 and 894 and gastric cancer.AIM To investigate the impact of amino acid deletions at positions 893 and 894 on CagA function.METHODS We selected a representative HZT strain from a gastric cancer patient with amino acid deletions at positions 893 and 894.The cagA gene was amplified and mutated into cagA-NT and cagA-NE(sequence characteristics of strains from nongastric cancer patients),cloned and inserted into pAdtrack-CMV,and then transfected into AGS cells.The expression of cagA and its mutants was examined using realtime polymerase chain reaction and Western blotting,cell elongation via cell counting,F-actin cytoskeleton visualization using fluorescence staining,and interleukin-8(IL-8)secretion via enzyme-linked immunosorbent assay.RESULTS The results revealed that pAdtrack/cagA induced a more pronounced hummingbird phenotype than pAdtrack/cagA-NT and pAdtrack/cagA-NE(40.88±3.10 vs 32.50±3.17,P<0.001 and 40.88±3.10 vs 32.17±3.00,P<0.001)at 12 hours after transfection.At 24 hours,pAdtrack/cagA-NE induced significantly fewer hummingbird phenotypes than pAdtrack/cagA and pAdtrack/cagA-NT(46.02±2.12 vs 53.90±2.10,P<0.001 and 46.02±2.12 vs 51.15±3.74,P<0.001).The total amount of F-actin caused by pAdtrack/cagA was significantly lower than that caused by pAdtrack/cagA-NT and pAdtrack/cagA-NE(27.54±17.37 vs 41.51±11.90,P<0.001 and 27.54±17.37 vs 41.39±14.22,P<0.001)at 12 hours after transfection.Additionally,pAdtrack/cagA induced higher IL-8 secretion than pAdtrack/cagA-NT and pAdtrack/cagA-NE at different times after transfection.CONCLUSION Amino acid deletions at positions 893 and 894 enhance CagA pathogenicity,which is crucial for revealing the pathogenic mechanism of CagA and identifying biomarkers of highly pathogenic H.pylori.展开更多
Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(...Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.展开更多
Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emerge...Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.展开更多
Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(...Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.展开更多
BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unkn...BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.展开更多
Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported t...Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.展开更多
Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton ...Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.展开更多
Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinester...Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.展开更多
Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is s...Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).展开更多
●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven fa...●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven family members with and without atypical aniridia were recruited.All family members underwent comprehensive ophthalmic examinations.A combination of whole exome sequencing(WES)and direct Sanger sequencing were performed to uncover the causative mutation.●RESULTS:Among the 11 family members,8 were clinically diagnosed with congenital aniridia(atypical aniridia phenotype).A rare heterozygous mutation c.622C>T(p.Arg208Trp)in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects.●CONCLUSION:A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia.This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia,which may also contribute to genetic counselling and family planning.展开更多
Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we ...Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.展开更多
Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of s...Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of some important fiber characteristics such as fiber maturity,fineness,and neps,which in turn has impeded the genetic improvement and industrial utilization of cotton fiber.Here,12 single fiber quality traits were measured using Advanced Fiber Information System(AFIS)equipment among 383 accessions of upland cotton(Gossypium hirsutum L.).In addition,eight conventional fiber quality traits were assessed by the High Volume Instrument(HVI)System.Genome-wide association study(GWAS),linkage disequilibrium(LD)block genotyping and functional identification were conducted sequentially to uncover the associated elite loci and candidate genes of fiber quality traits.As a result,the previously reported pleiotropic locus FL_D11 regulating fiber length-related traits was identified in this study.More importantly,three novel pleiotropic loci(FM_A03,FF_A05,and FN_A07)regulating fiber maturity,fineness and neps,respectively,were detected based on AFIS traits.Numerous highly promising candidate genes were screened out by integrating RNA-seq and qRT-PCR analyses,including the reported GhKRP6 for fiber length,the newly identified GhMAP8 for maturity and GhDFR for fineness.The origin and evolutionary analysis of pleiotropic loci indicated that the selection pressure on FL_D11,FM_A03 and FF_A05 increased as the breeding period approached the present and the origins of FM_A03 and FF_A05 were traced back to cotton landraces.These findings reveal the genetic basis underlying fiber quality and provide insight into the genetic improvement and textile utilization of fiber in G.hirsutum.展开更多
Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton vari...Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton varieties with heightened resistance to VW stands out as one of the most efficacious protective measures.In this study,we successfully generated two stable transgenic lines of cotton(Gossypium hirsutum L.),VdThitRNAi-1 and VdThit-RNAi-2,using host-induced gene silencing(HIGS)technology to introduce double-stranded RNA(dsRNA)targeting the thiamine transporter protein gene(VdThit).Southern blot analysis confirmed the presence of a single-copy insertion in each line.Microscopic examination showed marked reductions in the colonization and spread of Vd-mCherry in the roots of VdThit-RNAi cotton compared to wild type(WT).The corresponding disease index and fungal biomass of VdThit-RNAi-1/2 also exhibited significant reductions.Real-time quantitative PCR(qRT-PCR)analysis demonstrated a substantial inhibition of VdThit expression following prolonged inoculation of VdThit-RNAi cotton.Small RNA sequencing(sRNA-Seq)analysis revealed the generation of a substantial number of VdThit-specific siRNAs in the VdThit-RNAi transgenic lines.Additionally,the silencing of VdThit by the siVdThit produced by VdThit-RNAi-1/2 resulted in the elevated expression of multiple genes involved in the thiamine biosynthesis pathway in Vd.Under field conditions,VdThit-RNAi transgenic cotton exhibited significantly enhanced disease resistance and yield compared with WT.In summary,our findings underscore the efficacy of HIGS targeting VdThit in restraining the infection and spread of Vd in cotton,thereby potentially enabling the development of cotton breeding as a promising strategy for managing VW.展开更多
文摘AIM: To study the relationship between the cytotoxinassociated gene-A (CagA) status of H pylori strains and cerebral infarction among European Caucasians and Chinese Han by conducting a meta-analysis.METHODS: Ten case-control studies, with data on a total of 907 cases and 966 controls, were retrieved and considered; disqualified studies were excluded. The included studies were then tested for heterogeneity, and a meta-analysis was performed.RESULTS: The combined data revealed CagA-bearing strains of Hpylori which cause chronic infection are associated with an increased risk of cerebral infarction (OR = 2.66, 950 CI: 2.17-3.26), but no such relationship was found with CagA-negative strains (OR = 0.74, 95% CI: 0.49-1.10) in the overall population. We performed subgroup analyses, dividing the overall population into European Caucasians and Chinese Han subgroups, and analyzed the studies according to their subgroup classification. Through the subgroup analysis, an association between cerebral infarction and CagAbearing strains was found in both subgroups (OR = 2.60, 95% CI: 1.93-3.49 in Chinese Han; OR = 2.71, 95% CI: 2.05-3.59 in European Caucasians), but no significant association was found between cerebral infarction and CagA-negative strains (OR = 0.81, 95% CI: 0.45-1.48 in Chinese Han; OR = 0.64, 95% CI: 0.37-1.09 in European Caucasians).CONCLUSION: These results suggest CagA-bearing strains of H pylori are significantly associated with susceptibility to cerebral infarction in Chinese Han and European Caucasians, but that CagA-negative strains are not a definite predisposing factor in either subgroup. The magnitude of this association with cerebral infarction needs to be confirmed by prospective studies and combined studies of Hpylori eradication.
基金School-level Foundation,No. 200503Ministry Youth Innovation Fund Project,No. 200901
文摘OBJECTIVE: To assess the role of cytotoxin-associated gene-A (CagA) positive strains of Helicobacter pylori (Hp) in ischemic stroke (IS) subtypes. DATA SOURCES: A computer-based online search of PubMed, EMBASE, the Cochrane Collaboration database, the CNKI database and the VIP database, from January 1997 to July 2010, was performed to find relevant studies. DATA SELECTION: Case-control studies relevant to CagA with IS and IS subtypes were selected. Data regarding related factors in the case group and control group were acquired using the same approach. All patients had been diagnosed as exhibiting IS using skull CT or MRI, and were etiologically typed according to the 1993 TOAST diagnosis criteria. Two investigators independently performed the same search and study selection. Meta-analyses were then performed for the selected studies using RevMan 5.0 software (Cochrane Collaboration) after strict screening. Heterogeneity tests, sensitivity analyses and publication bias assessments were then conducted. MAIN OUTCOME MEASURES: Relationship of CagA with IS and IS subtypes. RESULTS: Eight studies were selected, involving data from 879 patients with IS, and 849 healthy controls. Five out of eight of the selected studies were related to large artery atherosclerosis (461 patients with IS and 497 health controls). The results of our meta-analysis revealed a significant association between prior infection with CagA-positive strains and increased risk of IS (odds ratio (OR) = 2.31,95% confidence interval (C/): 1.89-2.82, P 〈 0.01), In addition, we found an association between infection with CagA-negative strains and IS (OR = 0.57, 95%C1:0.47 0.70, P 〈 0.01). CagA positive and negative strains were found to correlate with large artery atherosclerosis (CagA-positive strains: OR = 2.87, 95%C/: 2.19-3.77, P 〈 0.01; CagA-negative strains: OR = 0.51, 95%CL 0.39 0.67, P 〈 0.01). Because of the diversity of etiological factors in the case-control study, we conducted further analyses after correcting for confounding factors, and the overall effects were recalculated. The results revealed significant relationships between CagA-positive strains and IS (OR = 2.36, 95%C1: 1.84-3.02, P 〈 0.01), and between CagA-positive strains and large artery atherosclerosis (OR = 3.10, 95%C1: 2.29-4.19, P 〈 0.01 ). A heterogeneity test of CagA-positive strains in IS and its subtypes revealed good homogeneity (f = 0%; f = 0%) and we adopted a fixed-effects model to calculate OR. Sensitivity analysis confirmed that the results of the meta-analysis were reliable. However, the funnel plot suggested that the experimental results may be affected by bias, possibly resulting from a lack of published studies reporting negative outcomes in the meta-analysis. CONCLUSION: Infection with CagA-positive strains is a risk factor for IS, especially the large artery atherosclerosis subtype. However, the evidence from case-control studies is weak, and more prospective studies are required to conclusively determine whether infection by CagA-positive strains should be considered a novel risk factor for IS and its subtypes.
基金Supported by Foundation of Scientific Technology Bureau of Zhejiang Province,No.2010C33118
文摘Helicobacter pylori(H.pylori)infection might initiate and contribute to the progression of lymphoma from gastric mucosa-associated lymphoid tissue(MALT).Increasing evidence shows that eradication of H.pylori with antibiotic therapy can lead to regression of gastric MALT lymphoma and can result in a 10-year sustained remission.The eradication of H.pylori is the standard care for patients with gastric MALT lymphoma.Cytotoxin-associated gene A(CagA)protein,one of the most extensively studied H.pylori virulence factors,is strongly associated with the gastric MALT lymphoma.CagA possesses polymorphisms according to its C-terminal structure and displays different functions among areas and races.After being translocated into B lymphocytes via typeⅣsecretion system,CagA deregulates intracellular signaling pathways in both tyrosine phosphorylation-dependent and-independent manners and/or some other pathways,and thereby promotes lymphomagenesis.A variety of proteins including p53and protein tyrosine phosphatases-2 are involved in the malignant transformation induced by CagA.Mucosal inflammation is the foundational mechanism underlying the occurrence and development of gastric MALT lymphoma.
基金National Natural Science Foundation of China,No.81572350。
文摘BACKGROUND Approximately 90%of new cases of noncardiac gastric cancer(GC)are related to Helicobacter pylori(H.pylori),and cytotoxin-associated gene A(CagA)is one of the main pathogenic factors.Recent studies have shown that the pharmacological effects of cryptotanshinone(CTS)can be used to treat a variety of tumors.However,the effects of CTS on H.pylori,especially CagA+strain-induced gastric mucosal lesions,on the development of GC is unknown.AIM To assess the role of CTS in CagA-induced proliferation and metastasis of GC cells,and determine if CagA+H.pylori strains causes pathological changes in the gastric mucosa of mice.METHODS The effects of CTS on the proliferation of GC cells were assessed using the Cell Counting Kit-8(CCK-8)assay,and the abnormal growth,migration and invasion caused by CagA were detected by CCK-8 and transwell assays.After transfection with pSR-HA-CagA and treatment with CTS,proliferation and metastasis were evaluated by CCK-8 and transwell assays,respectively,and the expression of Src homology 2(SH2)domain–containing phosphatase 2(SHP2)and phosphorylated SHP2(p-SHP2)was detected using western blotting in AGS cells.The enzymelinked immunosorbent assay was used to determine the immunoglobulin G(IgG)level against CagA in patient serum.Mice were divided into four groups and administered H.pylori strains(CagA+or CagA-)and CTS(or PBS)intragastrically,and establishment of the chronic infection model was verified using polymerase chain reaction and sequencing of isolated strains.Hematoxylin and eosin staining was used to assess mucosal erosion in the stomach and toxicity to the liver and kidney.RESULTS CTS inhibited the growth of GC cells in dose-and time-dependent manners.Overexpression of CagA promoted the growth,migration,and invasion of GC cells.Importantly,we demonstrated that CTS significantly inhibited the CagAinduced abnormal proliferation,migration,and invasion of GC cells.Moreover,the expression of p-SHP2 protein in tumor tissue was related to the expression of IgG against CagA in the serum of GC patients.Additionally,CTS suppressed the protein expression levels of both SHP2 and p-SHP2 in GC cells.CTS suppressed CagA+H.pylori strain-induced mucosal erosion in the stomach of mice but had no obvious effects on the CagA-H.pylori strain group.CONCLUSION CTS inhibited CagA-induced proliferation and the epithelial-mesenchymal transition of GC cells in vitro,and CagA+H.pylori strains caused mucosal erosions of the stomach in vivo by decreasing the protein expression of SHP2.
文摘Objective A systematic meta-analysis was performed to explore the role of cytotoxin-associated gene-A (CagA) seropositive strains of Helicobacter pylori (H. pylon) in the pathogenesis of atherosclerotic diseases. Data sources Data from Medline, EMBASE, CBMdisc, CNKI and the Cochrane Collaboration database were searched. Similar search strategies were applied to each of these databases. Study selection The review was restricted to the case-control studies on infective, chronic virulent CagA strains of H. pylori, involving the risk of ischemic stroke and coronary heart disease, ineligible studies were excluded. Two reviewers independently extracted the data and assessed study quality. Results Totally 26 case-control studies (11 studies on ischemic stroke and 15 studies on coronary heart disease) were retrieved and considered. The combined data revealed that the chronic seropositive virulent strains of H. pylori infection had a trend of increasing the risk of ischemic strokes and coronary heart diseases, yielding pooled ORs of 2.68 (95% CI: 2.20, 3.27) and 2.11 (95% CI: 1.70, 2.62), respectively. We also performed subgroup analyses, dividing the total population into Caucasian and Chinese subgroups. Through the subgroup analysis, no significant difference was found between the subgroups. Conclusions Our results support the hypothesis that CagA-seropositive strains infection is significantly associated with susceptibility to ischemic strokes and coronary heart diseases. The magnitude of the association with atherosclerotic diseases needs to be confirmed by prospective studies and the studies on CagA-seropositive strains eradication are more important.
基金Supported by the Shandong Medical and Health Science and Technology Development Plan Project,No.202202080452.
文摘BACKGROUND Helicobacter pylori(H.pylori)persistently colonizes the human gastric mucosa in more than 50%of the global population,leading to various gastroduodenal diseases ranging from chronic gastritis to gastric carcinoma.Cytotoxin-associated gene A(CagA)protein,an important oncoprotein,has highly polymorphic Glu-Pro-Ile-Tyr-Ala segments at the carboxyl terminus,which play crucial roles in pathogenesis.Our previous study revealed a significant association between amino acid deletions at positions 893 and 894 and gastric cancer.AIM To investigate the impact of amino acid deletions at positions 893 and 894 on CagA function.METHODS We selected a representative HZT strain from a gastric cancer patient with amino acid deletions at positions 893 and 894.The cagA gene was amplified and mutated into cagA-NT and cagA-NE(sequence characteristics of strains from nongastric cancer patients),cloned and inserted into pAdtrack-CMV,and then transfected into AGS cells.The expression of cagA and its mutants was examined using realtime polymerase chain reaction and Western blotting,cell elongation via cell counting,F-actin cytoskeleton visualization using fluorescence staining,and interleukin-8(IL-8)secretion via enzyme-linked immunosorbent assay.RESULTS The results revealed that pAdtrack/cagA induced a more pronounced hummingbird phenotype than pAdtrack/cagA-NT and pAdtrack/cagA-NE(40.88±3.10 vs 32.50±3.17,P<0.001 and 40.88±3.10 vs 32.17±3.00,P<0.001)at 12 hours after transfection.At 24 hours,pAdtrack/cagA-NE induced significantly fewer hummingbird phenotypes than pAdtrack/cagA and pAdtrack/cagA-NT(46.02±2.12 vs 53.90±2.10,P<0.001 and 46.02±2.12 vs 51.15±3.74,P<0.001).The total amount of F-actin caused by pAdtrack/cagA was significantly lower than that caused by pAdtrack/cagA-NT and pAdtrack/cagA-NE(27.54±17.37 vs 41.51±11.90,P<0.001 and 27.54±17.37 vs 41.39±14.22,P<0.001)at 12 hours after transfection.Additionally,pAdtrack/cagA induced higher IL-8 secretion than pAdtrack/cagA-NT and pAdtrack/cagA-NE at different times after transfection.CONCLUSION Amino acid deletions at positions 893 and 894 enhance CagA pathogenicity,which is crucial for revealing the pathogenic mechanism of CagA and identifying biomarkers of highly pathogenic H.pylori.
基金supported by the Major Program of National Agricultural Science and Technology of China(NK20220607)the West Light Foundation of the Chinese Academy of Sciences(2022XBZG_XBQNXZ_A_001)the Sichuan Science and Technology Program,China(2022ZDZX0014)。
文摘Grain weight is one of the key components of wheat(Triticum aestivum L.)yield.Genetic manipulation of grain weight is an efficient approach for improving yield potential in breeding programs.A recombinant inbred line(RIL)population derived from a cross between W7268 and Chuanyu 12(CY12)was employed to detect quantitative trait loci(QTLs)for thousand-grain weight(TGW),grain length(GL),grain width(GW),and the ratio of grain length to width(GLW)in six environments.Seven major QTLs,QGl.cib-2D,QGw.cib-2D,QGw.cib-3B,QGw.cib-4B.1,QGlw.cib-2D.1,QTgw.cib-2D.1 and QTgw.cib-3B.1,were consistently identified in at least four environments and the best linear unbiased estimation(BLUE)datasets,and they explained 2.61 to 34.85%of the phenotypic variance.Significant interactions were detected between the two major TGW QTLs and three major GW loci.In addition,QTgw.cib-3B.1 and QGw.cib-3B were co-located,and the improved TGW at this locus was contributed by GW.Unlike other loci,QTgw.cib-3B.1/QGw.cib-3B had no effect on grain number per spike(GNS).They were further validated in advanced lines using Kompetitive Allele Specific PCR(KASP)markers,and a comparison analysis indicated that QTgw.cib-3B.1/QGw.cib-3B is likely a novel locus.Six haplotypes were identified in the region of this QTL and their distribution frequencies varied between the landraces and cultivars.According to gene annotation,spatial expression patterns,ortholog analysis and sequence variation,the candidate gene of QTgw.cib-3B.1/QGw.cib-3B was predicted.Collectively,the major QTLs and KASP markers reported here provide valuable information for elucidating the genetic architecture of grain weight and for molecular marker-assisted breeding in grain yield improvement.
文摘Noncoding RNAs instruct the Cas9 nuclease to site speifillyl cleave DNA in the CRISPR/Cas9 system.Despite the high incidence of hepatocellular carcinoma(HCC),the patient's outcome is poor.As a result of the emergence of therapeutic resistance in HCC patients,dlinicians have faced difficulties in treating such tumor.In addition,CRISPR/Cas9 screens were used to identify genes that improve the dlinical response of HCC patients.It is the objective of this article to summarize the current understanding of the use of the CRISPR/Cas9 system for the treatment of cancer,with a particular emphasis on HCC as part of the current state of knowledge.Thus,in order to locate recent developments in oncology research,we examined both the Scopus database and the PubMed database.The ability to selectively interfere with gene expression in combinatorial CRISPR/Cas9 screening can lead to the discovery of new effective HCC treatment regimens by combining clinically approved drugs.Drug resistance can be overcome with the help of the CRISPR/Cas9 system.HCC signature genes and resistance to treatment have been uncovered by genome-scale CRISPR activation screening although this method is not without limitations.It has been extensively examined whether CRISPR can be used as a tool for disease research and gene therapy.CRISPR and its applications to tumor research,particularly in HCC,are examined in this study through a review of the literature.
基金supported by the National Key Research and Development Program of China (2021YFF0702201)National Natural Science Foundation of China (81873736,31872779,81830032)+2 种基金Guangzhou Key Research Program on Brain Science (202007030008)Department of Science and Technology of Guangdong Province (2021ZT09Y007,2020B121201006,2018B030337001,2021A1515012526)Natural Science Foundation of Guangdong Province (2021A1515012526,2022A1515012651)。
文摘Neurodegenerative diseases(NDs)are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease(AD),Parkinson's disease(PD),Huntington's disease(HD),and amyotrophic lateral sclerosis(ALS).Currently,there are no therapies available that can delay,stop,or reverse the pathological progression of NDs in clinical settings.As the population ages,NDs are imposing a huge burden on public health systems and affected families.Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments.While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms,the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap.Old World nonhuman primates(NHPs),such as rhesus,cynomolgus,and vervet monkeys,are phylogenetically,physiologically,biochemically,and behaviorally most relevant to humans.This is particularly evident in the similarity of the structure and function of their central nervous systems,rendering such species uniquely valuable for neuroscience research.Recently,the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms.This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained,as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
基金Supported by National Natural Science Foundation of China,No.82100594.
文摘BACKGROUND Helicobacter pylori(H.pylori)infection is related to various extragastric diseases including type 2 diabetes mellitus(T2DM).However,the possible mechanisms connecting H.pylori infection and T2DM remain unknown.AIM To explore potential molecular connections between H.pylori infection and T2DM.METHODS We extracted gene expression arrays from three online datasets(GSE60427,GSE27411 and GSE115601).Differentially expressed genes(DEGs)commonly present in patients with H.pylori infection and T2DM were identified.Hub genes were validated using human gastric biopsy samples.Correlations between hub genes and immune cell infiltration,miRNAs,and transcription factors(TFs)were further analyzed.RESULTS A total of 67 DEGs were commonly presented in patients with H.pylori infection and T2DM.Five significantly upregulated hub genes,including TLR4,ITGAM,C5AR1,FCER1G,and FCGR2A,were finally identified,all of which are closely related to immune cell infiltration.The gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links.TF-gene interaction networks showed that TLR4 was coregulated by 26 TFs,the largest number of TFs among the 5 hub genes.CONCLUSION We identified five hub genes that may have molecular connections between H.pylori infection and T2DM.This study provides new insights into the pathogenesis of H.pylori-induced onset of T2DM.
基金supported by the National Natural Science Foundation of China,No.81870975(to SZ)。
文摘Exosomes exhibit complex biological functions and mediate a variety of biological processes,such as promoting axonal regeneration and functional recove ry after injury.Long non-coding RNAs(IncRNAs)have been reported to play a crucial role in axonal regeneration.Howeve r,the role of the IncRNA-microRNAmessenger RNA(mRNA)-competitive endogenous RNA(ceRNA)network in exosome-mediated axonal regeneration remains unclear.In this study,we performed RNA transcriptome sequencing analysis to assess mRNA expression patterns in exosomes produced by cultured fibroblasts(FC-EXOs)and Schwann cells(SCEXOs).Diffe rential gene expression analysis,Gene Ontology analysis,Kyoto Encyclopedia of Genes and Genomes analysis,and protein-protein intera ction network analysis were used to explo re the functions and related pathways of RNAs isolated from FC-EXOs and SC-EXOs.We found that the ribosome-related central gene Rps5 was enriched in FC-EXOs and SC-EXOs,which suggests that it may promote axonal regeneration.In addition,using the miRWalk and Starbase prediction databases,we constructed a regulatory network of ceRNAs targeting Rps5,including 27 microRNAs and five IncRNAs.The ceRNA regulatory network,which included Ftx and Miat,revealed that exsosome-derived Rps5 inhibits scar formation and promotes axonal regeneration and functional recovery after nerve injury.Our findings suggest that exosomes derived from fibro blast and Schwann cells could be used to treat injuries of peripheral nervous system.
基金supported by the Jiangsu Natural Science Foundation,China(BK20231468)the Fundamental Research Funds for the Central Universities,China(ZJ24195012)+3 种基金the National Natural Science Foundation in China(31871668)the Jiangsu Key R&D Program,China(BE2022384)the Xinjiang Uygur Autonomous Region Science and Technology Support Program,China(2021E02003)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project,China(No.10)。
文摘Root system architecture plays an essential role in water and nutrient acquisition in plants,and it is significantly involved in plant adaptations to various environmental stresses.In this study,a panel of 242 cotton accessions was collected to investigate six root morphological traits at the seedling stage,including main root length(MRL),root fresh weight(RFW),total root length(TRL),root surface area(RSA),root volume(RV),and root average diameter(AvgD).The correlation analysis of the six root morphological traits revealed strong positive correlations of TRL with RSA,as well as RV with RSA and AvgD,whereas a significant negative correlation was found between TRL and AvgD.Subsequently,a genome-wide association study(GWAS)was performed using the root phenotypic and genotypic data reported previously for the 242 accessions using 56,010 single nucleotide polymorphisms(SNPs)from the CottonSNP80K array.A total of 41 quantitative trait loci(QTLs)were identified,including nine for MRL,six for RFW,nine for TRL,12 for RSA,12 for RV and two for AvgD.Among them,eight QTLs were repeatedly detected in two or more traits.Integrating these results with a transcriptome analysis,we identified 17 candidate genes with high transcript values of transcripts per million(TPM)≥30 in the roots.Furthermore,we functionally verified the candidate gene GH_D05G2106,which encodes a WPP domain protein 2in root development.A virus-induced gene silencing(VIGS)assay showed that knocking down GH_D05G2106significantly inhibited root development in cotton,indicating its positive role in root system architecture formation.Collectively,these results provide a theoretical basis and candidate genes for future studies on cotton root developmental biology and root-related cotton breeding.
文摘Alzheimer’s disease is a progressive neurodegenerative disorder and the most common cause of dementia that principally affects older adults.Pathogenic factors,such as oxidative stress,an increase in acetylcholinesterase activity,mitochondrial dysfunction,genotoxicity,and neuroinflammation are present in this syndrome,which leads to neurodegeneration.Neurodegenerative pathologies such as Alzheimer’s disease are considered late-onset diseases caused by the complex combination of genetic,epigenetic,and environmental factors.There are two main types of Alzheimer’s disease,known as familial Alzheimer’s disease(onset<65 years)and late-onset or sporadic Alzheimer’s disease(onset≥65 years).Patients with familial Alzheimer’s disease inherit the disease due to rare mutations on the amyloid precursor protein(APP),presenilin 1 and 2(PSEN1 and PSEN2)genes in an autosomaldominantly fashion with closely 100%penetrance.In contrast,a different picture seems to emerge for sporadic Alzheimer’s disease,which exhibits numerous non-Mendelian anomalies suggesting an epigenetic component in its etiology.Importantly,the fundamental pathophysiological mechanisms driving Alzheimer’s disease are interfaced with epigenetic dysregulation.However,the dynamic nature of epigenetics seems to open up new avenues and hope in regenerative neurogenesis to improve brain repair in Alzheimer’s disease or following injury or stroke in humans.In recent years,there has been an increase in interest in using natural products for the treatment of neurodegenerative illnesses such as Alzheimer’s disease.Through epigenetic mechanisms,such as DNA methylation,non-coding RNAs,histone modification,and chromatin conformation regulation,natural compounds appear to exert neuroprotective effects.While we do not purport to cover every in this work,we do attempt to illustrate how various phytochemical compounds regulate the epigenetic effects of a few Alzheimer’s disease-related genes.
基金supported by the Notional Natural Science Foundation of China,No.81960417 (to JX)Guangxi Key Research and Development Program,No.GuiKeA B20159027 (to JX)the Natural Science Foundation of Guangxi Zhuang Autonomous Region,No.2022GXNSFBA035545 (to YG)。
文摘Immune changes and inflammatory responses have been identified as central events in the pathological process of spinal co rd injury.They can greatly affect nerve regeneration and functional recovery.However,there is still limited understanding of the peripheral immune inflammato ry response in spinal cord inju ry.In this study.we obtained microRNA expression profiles from the peripheral blood of patients with spinal co rd injury using high-throughput sequencing.We also obtained the mRNA expression profile of spinal cord injury patients from the Gene Expression Omnibus(GEO)database(GSE151371).We identified 54 differentially expressed microRNAs and 1656 diffe rentially expressed genes using bioinformatics approaches.Functional enrichment analysis revealed that various common immune and inflammation-related signaling pathways,such as neutrophil extracellular trap formation pathway,T cell receptor signaling pathway,and nuclear factor-κB signal pathway,we re abnormally activated or inhibited in spinal cord inju ry patient samples.We applied an integrated strategy that combines weighted gene co-expression network analysis,LASSO logistic regression,and SVM-RFE algorithm and identified three biomarke rs associated with spinal cord injury:ANO10,BST1,and ZFP36L2.We verified the expression levels and diagnostic perfo rmance of these three genes in the original training dataset and clinical samples through the receiver operating characteristic curve.Quantitative polymerase chain reaction results showed that ANO20 and BST1 mRNA levels were increased and ZFP36L2 mRNA was decreased in the peripheral blood of spinal cord injury patients.We also constructed a small RNA-mRNA interaction network using Cytoscape.Additionally,we evaluated the proportion of 22 types of immune cells in the peripheral blood of spinal co rd injury patients using the CIBERSORT tool.The proportions of naive B cells,plasma cells,monocytes,and neutrophils were increased while the proportions of memory B cells,CD8^(+)T cells,resting natural killer cells,resting dendritic cells,and eosinophils were markedly decreased in spinal cord injury patients increased compared with healthy subjects,and ANO10,BST1 and ZFP26L2we re closely related to the proportion of certain immune cell types.The findings from this study provide new directions for the development of treatment strategies related to immune inflammation in spinal co rd inju ry and suggest that ANO10,BST2,and ZFP36L2 are potential biomarkers for spinal cord injury.The study was registe red in the Chinese Clinical Trial Registry(registration No.ChiCTR2200066985,December 12,2022).
文摘●AIM:To investigate the molecular diagnosis of a threegeneration Chinese family affected with aniridia,and further to identify clinically a PAX6 missense mutation in members with atypical aniridia.●METHODS:Eleven family members with and without atypical aniridia were recruited.All family members underwent comprehensive ophthalmic examinations.A combination of whole exome sequencing(WES)and direct Sanger sequencing were performed to uncover the causative mutation.●RESULTS:Among the 11 family members,8 were clinically diagnosed with congenital aniridia(atypical aniridia phenotype).A rare heterozygous mutation c.622C>T(p.Arg208Trp)in exon 8 of PAX6 was identified in all affected family members but not in the unaffected members or in healthy control subjects.●CONCLUSION:A rare missense mutation in the PAX6 gene is found in members of a three-generation Chinese family with congenital atypical aniridia.This result contributes to an increase in the phenotypic spectrum caused by PAX6 missense heterozygous variants and provides useful information for the clinical diagnosis of atypical aniridia,which may also contribute to genetic counselling and family planning.
基金supported by grants from the Major Program of National Agricultural Science and Technology of China(NK20220607)the National Natural Science Foundation of China(32272059 and 31971883)the Science and Technology Department of Sichuan Province(2021YFYZ0002,2022ZDZX0014,and 2023NSFSC1995)。
文摘Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.
基金supported by the National Key Research and Development Program of China(2022YFD1200300)the Central Plain Scholar Program,China(234000510004)the National Supercomputing Center in Zhengzhou,China。
文摘Cotton fiber quality is a persistent concern that determines planting benefits and the quality of finished textile products.However,the limitations of measurement instruments have hindered the accurate evaluation of some important fiber characteristics such as fiber maturity,fineness,and neps,which in turn has impeded the genetic improvement and industrial utilization of cotton fiber.Here,12 single fiber quality traits were measured using Advanced Fiber Information System(AFIS)equipment among 383 accessions of upland cotton(Gossypium hirsutum L.).In addition,eight conventional fiber quality traits were assessed by the High Volume Instrument(HVI)System.Genome-wide association study(GWAS),linkage disequilibrium(LD)block genotyping and functional identification were conducted sequentially to uncover the associated elite loci and candidate genes of fiber quality traits.As a result,the previously reported pleiotropic locus FL_D11 regulating fiber length-related traits was identified in this study.More importantly,three novel pleiotropic loci(FM_A03,FF_A05,and FN_A07)regulating fiber maturity,fineness and neps,respectively,were detected based on AFIS traits.Numerous highly promising candidate genes were screened out by integrating RNA-seq and qRT-PCR analyses,including the reported GhKRP6 for fiber length,the newly identified GhMAP8 for maturity and GhDFR for fineness.The origin and evolutionary analysis of pleiotropic loci indicated that the selection pressure on FL_D11,FM_A03 and FF_A05 increased as the breeding period approached the present and the origins of FM_A03 and FF_A05 were traced back to cotton landraces.These findings reveal the genetic basis underlying fiber quality and provide insight into the genetic improvement and textile utilization of fiber in G.hirsutum.
基金supported by the National Key Research and Development Program of China(2022YFD1200300)the National Natural Science Foundation of China(32072376 and 32372515)+3 种基金Winall Hi-tech Seed Co.,Ltd.,China(GMLM2023)the Nanfan Special Project of Chinese Academy of Agricultural Sciences(CAAS)(ZDXM2303 and YBXM2415)the Natural Science Foundation of Hebei Province,China(C2022204205)the Agricultural Science and Technology Innovation Program of CAAS。
文摘Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton varieties with heightened resistance to VW stands out as one of the most efficacious protective measures.In this study,we successfully generated two stable transgenic lines of cotton(Gossypium hirsutum L.),VdThitRNAi-1 and VdThit-RNAi-2,using host-induced gene silencing(HIGS)technology to introduce double-stranded RNA(dsRNA)targeting the thiamine transporter protein gene(VdThit).Southern blot analysis confirmed the presence of a single-copy insertion in each line.Microscopic examination showed marked reductions in the colonization and spread of Vd-mCherry in the roots of VdThit-RNAi cotton compared to wild type(WT).The corresponding disease index and fungal biomass of VdThit-RNAi-1/2 also exhibited significant reductions.Real-time quantitative PCR(qRT-PCR)analysis demonstrated a substantial inhibition of VdThit expression following prolonged inoculation of VdThit-RNAi cotton.Small RNA sequencing(sRNA-Seq)analysis revealed the generation of a substantial number of VdThit-specific siRNAs in the VdThit-RNAi transgenic lines.Additionally,the silencing of VdThit by the siVdThit produced by VdThit-RNAi-1/2 resulted in the elevated expression of multiple genes involved in the thiamine biosynthesis pathway in Vd.Under field conditions,VdThit-RNAi transgenic cotton exhibited significantly enhanced disease resistance and yield compared with WT.In summary,our findings underscore the efficacy of HIGS targeting VdThit in restraining the infection and spread of Vd in cotton,thereby potentially enabling the development of cotton breeding as a promising strategy for managing VW.