According to Newton's dynamical equation of the system of particles, the force is considered to be the function of the coordinate r, velocity and time t, and the various formulae for D'Alembert principle of t...According to Newton's dynamical equation of the system of particles, the force is considered to be the function of the coordinate r, velocity and time t, and the various formulae for D'Alembert principle of the velocity space in both the holonomic and nonholonomic systems are deduced by introducing the concept of kinetic energy in the velocity space (i.e. the accelerated energy).展开更多
本文引入了 m 阶导数空间及与之相应的广义坐标的概念,将原相对于3N维 Euclid 空间“E_(3N)”的 m 阶非完整系统变为 m 阶导数空间“中形式上的完整系统,导出了包含万有 D'Alembert——Lagrange 微分原理在内的任意阶非完整系统的新...本文引入了 m 阶导数空间及与之相应的广义坐标的概念,将原相对于3N维 Euclid 空间“E_(3N)”的 m 阶非完整系统变为 m 阶导数空间“中形式上的完整系统,导出了包含万有 D'Alembert——Lagrange 微分原理在内的任意阶非完整系统的新型 Appell 方程和广义的 D'Alembert 原理。展开更多
基金the Foundation of Hunan Provincial Educational Com mittee for You
文摘According to Newton's dynamical equation of the system of particles, the force is considered to be the function of the coordinate r, velocity and time t, and the various formulae for D'Alembert principle of the velocity space in both the holonomic and nonholonomic systems are deduced by introducing the concept of kinetic energy in the velocity space (i.e. the accelerated energy).
文摘本文引入了 m 阶导数空间及与之相应的广义坐标的概念,将原相对于3N维 Euclid 空间“E_(3N)”的 m 阶非完整系统变为 m 阶导数空间“中形式上的完整系统,导出了包含万有 D'Alembert——Lagrange 微分原理在内的任意阶非完整系统的新型 Appell 方程和广义的 D'Alembert 原理。