Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However,...Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.展开更多
弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别。针对红外多传感器的融合识别问题,本文提出了基于...弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别。针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法。首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率生成基本概率赋值(basic probability assignment,BPA);最后,利用D-S证据理论对多个证据的BPA进行融合,输出分类结果。实验结果表明,该方法能有效提高目标识别的准确性。展开更多
The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, d...The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies.展开更多
文摘Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision.
文摘弹道中段目标为一个目标群,包括弹头、诱饵、碎片等,并且由于距离传感器较远,红外成像为点目标,可用信息较少,因此单一的红外传感器往往难以满足识别要求,需要融合多个传感器进行识别。针对红外多传感器的融合识别问题,本文提出了基于增量支持向量机和D-S(increment support vector machine-Dempster-Shafer,ISVM-DS)证据理论的融合识别方法。首先,训练多个波段传感器红外特征的支持向量数据描述(support vector data description,SVDD)模型,生成壳向量并训练其ISVM模型;接着,采用ISVM模型的后验概率生成基本概率赋值(basic probability assignment,BPA);最后,利用D-S证据理论对多个证据的BPA进行融合,输出分类结果。实验结果表明,该方法能有效提高目标识别的准确性。
基金supported by the National Natural Science Foundation of China(Grants No.51190094,50909073,and 51179130)the Hubei Province Natural Science Foundation(Grant No.2010CDB08401)
文摘The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies.