In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs a...In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs are either too slow at replanning or unreliable in changing environments with multiple dynamic obstacles.In this study,we developed a novel path planning method based on the D^(*) lite algorithm for real-time path planning of USVs in complex environments.The proposed method has the following advantages:(1)the computational time for replanning is reduced significantly owing to the use of an incremental algorithm and a new method for modelling dynamic obstacles;(2)a constrained artificial potential field method is employed to enhance the safety of the planned paths;and(3)the method is practical in terms of vehicle performance.The performance of the proposed method was evaluated through simulations and compared with those of existing algorithms.The simulation results confirmed the efficiency of the method for real-time path planning of USVs in complex environments.展开更多
A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency ...A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA.展开更多
With serious cybersecurity situations and frequent network attacks,the demands for automated pentests continue to increase,and the key issue lies in attack planning.Considering the limited viewpoint of the attacker,at...With serious cybersecurity situations and frequent network attacks,the demands for automated pentests continue to increase,and the key issue lies in attack planning.Considering the limited viewpoint of the attacker,attack planning under uncertainty is more suitable and practical for pentesting than is the traditional planning approach,but it also poses some challenges.To address the efficiency problem in uncertainty planning,we propose the APU-D*Lite algorithm in this paper.First,the pentest framework is mapped to the planning problem with the Planning Domain Definition Language(PDDL).Next,we develop the pentest information graph to organize network information and assess relevant exploitation actions,which helps to simplify the problem scale.Then,the APU-D*Lite algorithm is introduced based on the idea of incremental heuristic searching.This method plans for both hosts and actions,which meets the requirements of pentesting.With the pentest information graph as the input,the output is an alternating host and action sequence.In experiments,we use the attack success rate to represent the uncertainty level of the environment.The result shows that APU-D*Lite displays better reliability and efficiency than classical planning algorithms at different attack success rates.展开更多
基金financially supported by the Cultivation of Scientific Research Ability of Young Talents of Shanghai Jiao Tong University(Grant No.19X100040072)the Key Laboratory of Marine Intelligent Equipment and System of Ministry of Education(Grant No.MIES-2020-07)。
文摘In recent decades,path planning for unmanned surface vehicles(USVs)in complex environments,such as harbours and coastlines,has become an important concern.The existing algorithms for real-time path planning for USVs are either too slow at replanning or unreliable in changing environments with multiple dynamic obstacles.In this study,we developed a novel path planning method based on the D^(*) lite algorithm for real-time path planning of USVs in complex environments.The proposed method has the following advantages:(1)the computational time for replanning is reduced significantly owing to the use of an incremental algorithm and a new method for modelling dynamic obstacles;(2)a constrained artificial potential field method is employed to enhance the safety of the planned paths;and(3)the method is practical in terms of vehicle performance.The performance of the proposed method was evaluated through simulations and compared with those of existing algorithms.The simulation results confirmed the efficiency of the method for real-time path planning of USVs in complex environments.
基金Supported by the Natural Science Foundation of Jiangsu Province (No.BK2004016).
文摘A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA.
文摘With serious cybersecurity situations and frequent network attacks,the demands for automated pentests continue to increase,and the key issue lies in attack planning.Considering the limited viewpoint of the attacker,attack planning under uncertainty is more suitable and practical for pentesting than is the traditional planning approach,but it also poses some challenges.To address the efficiency problem in uncertainty planning,we propose the APU-D*Lite algorithm in this paper.First,the pentest framework is mapped to the planning problem with the Planning Domain Definition Language(PDDL).Next,we develop the pentest information graph to organize network information and assess relevant exploitation actions,which helps to simplify the problem scale.Then,the APU-D*Lite algorithm is introduced based on the idea of incremental heuristic searching.This method plans for both hosts and actions,which meets the requirements of pentesting.With the pentest information graph as the input,the output is an alternating host and action sequence.In experiments,we use the attack success rate to represent the uncertainty level of the environment.The result shows that APU-D*Lite displays better reliability and efficiency than classical planning algorithms at different attack success rates.