The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural...The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.展开更多
Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,hi...Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.展开更多
Experimental data on the solubility of D-glucose,D-fructose and sucrose in the mixed solvents com-posed of water and ethanol from 273.2 to 293.2 K were determined.The solubility of D-glucose,D-fructose and sucrose dec...Experimental data on the solubility of D-glucose,D-fructose and sucrose in the mixed solvents com-posed of water and ethanol from 273.2 to 293.2 K were determined.The solubility of D-glucose,D-fructose and sucrose decreased as the ethanol content increased in the mixed solvent.The solubility of D-glucose,D-fructose and sucrose decreased with decreasing equilibrium temperature.The modified UNIQUAC model,S-UNIFAC model and mS-UNIFAC model were applied to predict the solid-liquid equilibria.The prediction results were compared and discussed.Better prediction accuracy was generated using the modified UNIQUAC model.展开更多
Selective conversion of fructose to 1,2-propanediol(1,2-PDO)is considered as a sustainable and cost-effective alternative to petroleum-based processes,however,this approach still faces challenges associated with low e...Selective conversion of fructose to 1,2-propanediol(1,2-PDO)is considered as a sustainable and cost-effective alternative to petroleum-based processes,however,this approach still faces challenges associated with low efficiency and harsh reaction conditions.Here,we have successfully synthesized a novel bifunctional Ru-WO_(x)-MgO_(y) catalyst through a facile'one-pot'solvothermal method.Remarkably,this catalyst exhibits exceptional catalytic performances in the conversion of fructose to 1,2-PDO under mild reaction conditions.The yield of 1,2-PDO is up to 56.2%at 140°C for 4 h under an ultra-low hydrogen pressure of only 0.2 MPa,surpassing the reported results in recent literature(below 51%).Comprehensive characterizations and density functional theory(DFT)calculations reveal that the presence of oxygen vacancies in the Ru-WO_(x)-MgO_(y) catalyst,serving as active acidic sites,facilitates the chemoselective cleavage of C-C bonds in fructose,which leads to the generation of active intermediates and ultimately resulted in the high yield of 1,2-PDO.展开更多
Sodium butyrate(NaB)can regulate lipid metabolism and inhibit hepatic steatosis.This study aimed to investigate whether NaB can alleviate fructose-induced hepat ic steatosis via remodeling the gut microbiota and evalu...Sodium butyrate(NaB)can regulate lipid metabolism and inhibit hepatic steatosis.This study aimed to investigate whether NaB can alleviate fructose-induced hepat ic steatosis via remodeling the gut microbiota and evaluate the anti-fatty liver mechanisms.The results showed that NaB and NaB-remodeled gut microbiota significantly alleviated fructose-induced hepatic steatosis and increased plasma uric acid and fructose levels.Furthermore,both NaB and NaB-remodeled gut microbiota increased the abundance of Lactobacillus and altered the levels of plasma amino acids(upregulating gamma-amino butyric acid(GABA)and downregulating L-glutamic acid and L-arginine)in fructose-exposed mice.The correlation analysis showed that GABA levels positively correlated with Lactobacillus abundance,and increased GABA levels might promote the reduction of the hepatic triglyceride content.Further studies confirmed that GABA significantly reduced lipid deposition in mouse hepatocytes induced via fructose pretreatment in vitro.These findings suggested that NaB could ameliorate fructose-induced hepatic steatosis by regulating gut microbiota.展开更多
Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communicat...Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communication,volunteers were given low,medium,and high doses of glucose and fructose.Serum cytokines,glucose,lactate,nicotinamide adenine dinucleotide(NADH)and metabolic enzymes were assayed,and central carbon metabolic pathway networks and cytokine communication networks were constructed.The results showed that the glucose and fructose groups basically maintained the trend of decreasing catabolism and increasing anabolism with increasing dose.Compared with glucose,low-dose fructose decreased catabolism and increased anabolism,significantly enhanced the expression of the inflammatory cytokine interferon-γ(IFN-γ),macrophage-derived chemokine(MDC),induced protein-10(IP-10),and eotaxin,and significantly reduced the activity of isocitrate dehydrogenase(ICDH)and pyruvate dehydrogenase complexes(PDHC).Both medium and high doses of fructose increase catabolism and anabolism,and there are more cytokines and enzymes with significant changes.Furthermore,multiple cytokines and enzymes show strong relevance to metabolic regulation by altering the transcription and expression of enzymes in central carbon metabolic pathways.Therefore,excessive intake of fructose should be reduced to avoid excessive inflammatory responses,allergic reactions and autoimmune diseases.展开更多
Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetabl...Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetables, and fruits. Understanding the isotopic compositions in organic compounds is crucial for comprehending various biochemical processes and the nature of substances present in different natural products. Tartaric acid, oxalic acid, glucose, and fructose are widely distributed compounds, including in vegetables and fruits. Tartaric acid plays a significant role in determining the quality and taste properties of wine, while oxalic acid is also prevalent but holds great interest for further research, especially in terms of carbon isotopic composition. We can unveil the mechanisms of processes that were previously impossible to study. Glucose and fructose are the most common monosaccharides in the hexose group, and both are found in fruits, with sweeter fruits containing higher amounts of these substances. In addition to fruits, wheat, barley, rye, onions, garlic, lentils, peppers, dried fruits, beans, broccoli, cabbage, tomatoes, and other foods are also rich sources of fructose and glucose. To determine the mass fraction of the carbon-13 isotope in these compounds, it is important to study their changes during natural synthesis. These compounds can be modified with a carbon center. According to the existing isotopic analysis method, these compounds are converted into carbon oxide or dioxide [1]. At this point, the average carbon content in the given compound is determined, but information about isotope-modified centers is lost. Dilution may occur through the transfer of other carbon-containing organic compounds in the sample or by dilution with natural carbon or carbon dioxide during the transfer process. This article discusses the possibility of carbon-13 isotope propagation directly in these compounds, both completely modified and modified with individual carbon centers. The literature provides information on determining carbon-13 substance in organic compounds, both with a general approach and for individual compounds [2] [3].展开更多
Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challen...Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challenge.In this work,Sn-doped silica nanotube(Sn-SNT)was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose.Over Sn-SNT,69.1%fructose yield with 78.5%selectivity was obtained after reaction at 110◦C for 6 h.The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity.Otherwise,high density of SiOH groups in Sn-SNT can ensure the presence of SiOH groups near the Sn sites,which is important for the isomerization of glucose to fructose,leading to the high fructose yield and selectivity.Furthermore,the Sn-SNT is recyclable.展开更多
High-saturated fat(HF)or high-fructose(HFr)consumption in children predispose them to metabolic syndrome(MetS).In rodent models of MetS,diets containing individually HF or HFr lead to a variable degree of MetS.Neverth...High-saturated fat(HF)or high-fructose(HFr)consumption in children predispose them to metabolic syndrome(MetS).In rodent models of MetS,diets containing individually HF or HFr lead to a variable degree of MetS.Nevertheless,simultaneous intake of HF plus HFr have synergistic effects,worsening MetS outcomes.In children,the effects of HF or HFr intake usually have been addressed individually.Therefore,we have reviewed the outcomes of HF or HFr diets in children,and we compare them with the effects reported in rodents.In humans,HFr intake causes increased lipogenesis,hypertriglyceridemia,obesity and insulin resistance.On the other hand,HF diets promote low grade-inflammation,obesity,insulin resistance.Despite the deleterious effects of simultaneous HF plus HFr intake on MetS development in rodents,there is little information about the combined effects of HF plus HFr intake in children.The aim of this review is to warn about this issue,as individually addressing the effects produced by HF or HFr may underestimate the severity of the outcomes of Western diet intake in the pediatric population.We consider that this is an alarming issue that needs to be assessed,as the simultaneous intake of HF plus HFr is common on fast food menus.展开更多
The oxidations of D-fructose and D-lactose were monitored spectrophotometrically by potassium permanganate in acidic medium at λmax 545 nm. Reaction demonstrated that the two oxidative species of permanganate were in...The oxidations of D-fructose and D-lactose were monitored spectrophotometrically by potassium permanganate in acidic medium at λmax 545 nm. Reaction demonstrated that the two oxidative species of permanganate were involved in an acidic oxidation of the sugars. It was established that respective acids of sugars as well as arabinonic and formic acid were the oxidation products. Respective acids of sugars were the results of reactive oxygen species of permanganate ions in acidic conditions while arabinonic and formic acids due to the cleavage of C__C bond through MnO-4 species. It was first order kinetics with respect to [MnO-4 ], [fructose], [lactose] and [H+]. Hg was used to accelerate the slow oxidation of lactose. Effect of varying salt electrolyte concentration was insignificant showing that the molecular species was involved in the rate determining step. Formic and arabinonic acids and respective acids were analyzed through spot and spectroscopic studies respectively. Reaction was monitored at different temperatures and thermodynamics activation parameters were determined. A mechanism consistent with kinetic studies, spectral evidences, stoichiometry of the reactions and product analysis has been proposed for the oxidation of fructose and lactose in absence and presence of catalyst respectively.展开更多
A correlation has been previously described between bifidobacteria counts before and after the use of a dietary additive in human studies. However, to our knowledge no information on this topic has yet been reported i...A correlation has been previously described between bifidobacteria counts before and after the use of a dietary additive in human studies. However, to our knowledge no information on this topic has yet been reported in animals, and no information exists either on similar possible correlations of bacterial groups other than bifidobacteria. The potential prebiotic effects of di-D-fructose dianhydride (DFA)-enriched caramels have been previously reported in laboratory animals, poultry and pigs. In the present work, twelve growing male castrated pigs (41.8 ± 1.9 kg mean BW) were fed in succession on a control (no additive) or DFA-enriched caramel (20 g/kg) containing diets. Another group of 10 pigs (38.0 ± 3.7 kg mean BW) fed on a control diet without any additive was used as negative control. Bacterial log10 number of copies of the 16S rRNA gene was determined in fecal samples by using qPCR. Increased (P10 number of copies were determined in fecal samples of pigs fed on the caramel containing diet compared with non-caramel controls. In addition, for all bacterial groups studied microbiological values co-variated with initial counts and, except for enterobacteria, variations in the fecal bacterial numbers after caramel supplementation correlated (P< 0.05) with the fecal numbers before supplementation. In conclusion, the supplementation of pig diets with DFA-enriched caramels induced significant increases in the fecal number of copies of bacterial groups regarded as beneficial, and variations in the fecal number of copies correlated with the initial fecal number of copies.展开更多
Objective: To study the effects of sodium magnesiusm fructose diphosphate(FDPM) on brain damage of rats after ischemia-reperfusion. Methods: Rats were subjected to cerebral ischemia-reperfusion induced by inserting a ...Objective: To study the effects of sodium magnesiusm fructose diphosphate(FDPM) on brain damage of rats after ischemia-reperfusion. Methods: Rats were subjected to cerebral ischemia-reperfusion induced by inserting a nylon thread into internal carotid artery to block the origin of middle cerebral artery and removing the thread later. FDPM (400 mg·kg -1), fructose-1,6-diphosphate (FDP, 400 mg·kg -1)and magnesium sulfate (MgSO 4, 30 mg·kg -1) were administrated 10 min after the onset of ischemia. Neurological scale, brain infarct area, Malondialdehyde(MDA) content and histopathological changes of brain tissue were studied. Results: FDPM decreased neurological scale, diminished brain infarct area, reduced MDA content and relieved histopathological change of rat brain tissue subjected to ischemia-reperfusion. These effects were more powerful than that of FDP or MgSO 4. Conclusions: It is suggested that FDPM markedly prevented rats against brain damage after cerebral ischemia-reperfusion, and its effect was better than that of FDP or MgSO 4.展开更多
The effect of tetrandrine (Tet) on the infarction area and volume of rat brain induced by middle cerebral artery occlusion (MCAO) was investigated. The treatment with Tet 7.5, 12.0 or 15.0 mg·kg 1 , or with...The effect of tetrandrine (Tet) on the infarction area and volume of rat brain induced by middle cerebral artery occlusion (MCAO) was investigated. The treatment with Tet 7.5, 12.0 or 15.0 mg·kg 1 , or with fructose 1,6 diphosphate (FDP) 200 and 350 mg·kg 1 ip immediately after MCAO, respectively, significantly reduced the infarction area and volume in a dose dependent manner. MK801 and FDP also displayed a protective effect on brain ischemia. A combination of Tet and FDP administered immediately after MCAO, produced a more potent protective effect than those treated with Tet or FDP alone. When Tet or FDP was administered 1 h and 2 h after MCAO, respectively, they could still significantly reduce the infarction area and volume of brain tissue. But, there was no significant protective effect when these two compounds were given 3 h after MCAO.展开更多
基金supported by Program for National Natural Science Foundation of China(Nos.22178135,21978104 and 22278419)the National Key Research and Development Program of China(No.2021YFC2101601)。
文摘The fructose-to-furfural transformation is facing major challenges in the selectivity and high efficiency. Herein, we have developed a simple and effective approach for the selective conversion of fructose to furfural using Hβ zeolite modified by organic acids for dealuminization to regulate its textural and acidic properties. It was found that citric acid-dealuminized Hβ zeolite possessed high specific surface areas, wide channels and high Brønsted acid amount, which facilitated the selective conversion of fructose to furfural with a maximum yield of 76.2% at433 K for 1 h in the γ-butyrolactone(GBL)-H_(2)O system, as well as the concomitant formation of 83.0% formic acid. The^(13)C-isotope labelling experiments and the mechanism revealed that the selective cleavage of C1–C2 or C5–C6 bond on fructose was firstly occurred to form pentose or C5 intermediate by weak Brønsted acid, which was then dehydrated to furfural by strong Brønsted acid. Also this dealuminized Hβ catalyst showed the great recycling performance and was active for the conversion of glucose and mannose.
基金The financial support from the National Natural Science Foundation of China(22278419,21978316,22108289,22172188)the Ministry of Science and Technology of China(2018YFB0604700)Suzhou Key Technology Research(Social Development)Project(2023ss06)。
文摘Efficient and selective glucose-to-fructose isomerization is a crucial step for production of oxygenated chemicals derived from sugars,which is usually catalyzed by base or Lewis acid heterogeneous catalyst.However,high yield and selectivity of fructose cannot be simultaneously obtained under mild conditions which hamper the scale of application compared with enzymatic catalysis.Herein,a Li-promoted C_(3)N_(4) catalyst was exploited which afforded an excellent fructose yield(40.3 wt%)and selectivity(99.5%)from glucose in water at 50℃,attributed to the formation of stable Li–N bond to strengthen the basic sites of catalysts.Furthermore,the so-formed N_(6)–Li–H_(2)O active site on Li–C_(3)N_(4) catalyst in aqueous phase changes the local electronic structure and strengthens the deprotonation process during glucose isomerization into fructose.The superior catalytic performance which is comparable to biological pathway suggests promising applications of lithium containing heterogeneous catalyst in biomass refinery.
基金Supported by the National Science and Technology Major Project (2009ZX09313-036) the China Postdoctoral Science Foundation (20090461360) the Zhejiang Provincial Education Department Projects (Y200907556)
文摘Experimental data on the solubility of D-glucose,D-fructose and sucrose in the mixed solvents com-posed of water and ethanol from 273.2 to 293.2 K were determined.The solubility of D-glucose,D-fructose and sucrose decreased as the ethanol content increased in the mixed solvent.The solubility of D-glucose,D-fructose and sucrose decreased with decreasing equilibrium temperature.The modified UNIQUAC model,S-UNIFAC model and mS-UNIFAC model were applied to predict the solid-liquid equilibria.The prediction results were compared and discussed.Better prediction accuracy was generated using the modified UNIQUAC model.
基金the financial support from the Natural Science Foundation of Chongqing(CSTB2022NSCQ-MSX0458)the State Key Laboratory of Coal Mine Disaster Dynamics and Control(2011DA105287-MS202203)+4 种基金the Joint Fund for Innovation and Development of Chongqing(CSTB2022NSCQ-LZX0030)the financial support from the National Natural Science Foundation of China(22168027 and 22308169)the financial support from the Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX0741)the financial support from the National Natural Science Foundation of China(22105028)the Natural Science Foundation of Chongqing(cstc2021jcyj-msxmX0572)。
文摘Selective conversion of fructose to 1,2-propanediol(1,2-PDO)is considered as a sustainable and cost-effective alternative to petroleum-based processes,however,this approach still faces challenges associated with low efficiency and harsh reaction conditions.Here,we have successfully synthesized a novel bifunctional Ru-WO_(x)-MgO_(y) catalyst through a facile'one-pot'solvothermal method.Remarkably,this catalyst exhibits exceptional catalytic performances in the conversion of fructose to 1,2-PDO under mild reaction conditions.The yield of 1,2-PDO is up to 56.2%at 140°C for 4 h under an ultra-low hydrogen pressure of only 0.2 MPa,surpassing the reported results in recent literature(below 51%).Comprehensive characterizations and density functional theory(DFT)calculations reveal that the presence of oxygen vacancies in the Ru-WO_(x)-MgO_(y) catalyst,serving as active acidic sites,facilitates the chemoselective cleavage of C-C bonds in fructose,which leads to the generation of active intermediates and ultimately resulted in the high yield of 1,2-PDO.
基金funded by the National Key R&D Program of China(2017YFE0114400)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)。
文摘Sodium butyrate(NaB)can regulate lipid metabolism and inhibit hepatic steatosis.This study aimed to investigate whether NaB can alleviate fructose-induced hepat ic steatosis via remodeling the gut microbiota and evaluate the anti-fatty liver mechanisms.The results showed that NaB and NaB-remodeled gut microbiota significantly alleviated fructose-induced hepatic steatosis and increased plasma uric acid and fructose levels.Furthermore,both NaB and NaB-remodeled gut microbiota increased the abundance of Lactobacillus and altered the levels of plasma amino acids(upregulating gamma-amino butyric acid(GABA)and downregulating L-glutamic acid and L-arginine)in fructose-exposed mice.The correlation analysis showed that GABA levels positively correlated with Lactobacillus abundance,and increased GABA levels might promote the reduction of the hepatic triglyceride content.Further studies confirmed that GABA significantly reduced lipid deposition in mouse hepatocytes induced via fructose pretreatment in vitro.These findings suggested that NaB could ameliorate fructose-induced hepatic steatosis by regulating gut microbiota.
基金financially supported by National Natural Science Foundation of China(31901782)。
文摘Fructose and glucose are often widely used in food processing and may contribute to many metabolic diseases.To observe the effects of different doses of glucose and fructose on human metabolism and cellular communication,volunteers were given low,medium,and high doses of glucose and fructose.Serum cytokines,glucose,lactate,nicotinamide adenine dinucleotide(NADH)and metabolic enzymes were assayed,and central carbon metabolic pathway networks and cytokine communication networks were constructed.The results showed that the glucose and fructose groups basically maintained the trend of decreasing catabolism and increasing anabolism with increasing dose.Compared with glucose,low-dose fructose decreased catabolism and increased anabolism,significantly enhanced the expression of the inflammatory cytokine interferon-γ(IFN-γ),macrophage-derived chemokine(MDC),induced protein-10(IP-10),and eotaxin,and significantly reduced the activity of isocitrate dehydrogenase(ICDH)and pyruvate dehydrogenase complexes(PDHC).Both medium and high doses of fructose increase catabolism and anabolism,and there are more cytokines and enzymes with significant changes.Furthermore,multiple cytokines and enzymes show strong relevance to metabolic regulation by altering the transcription and expression of enzymes in central carbon metabolic pathways.Therefore,excessive intake of fructose should be reduced to avoid excessive inflammatory responses,allergic reactions and autoimmune diseases.
文摘Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetables, and fruits. Understanding the isotopic compositions in organic compounds is crucial for comprehending various biochemical processes and the nature of substances present in different natural products. Tartaric acid, oxalic acid, glucose, and fructose are widely distributed compounds, including in vegetables and fruits. Tartaric acid plays a significant role in determining the quality and taste properties of wine, while oxalic acid is also prevalent but holds great interest for further research, especially in terms of carbon isotopic composition. We can unveil the mechanisms of processes that were previously impossible to study. Glucose and fructose are the most common monosaccharides in the hexose group, and both are found in fruits, with sweeter fruits containing higher amounts of these substances. In addition to fruits, wheat, barley, rye, onions, garlic, lentils, peppers, dried fruits, beans, broccoli, cabbage, tomatoes, and other foods are also rich sources of fructose and glucose. To determine the mass fraction of the carbon-13 isotope in these compounds, it is important to study their changes during natural synthesis. These compounds can be modified with a carbon center. According to the existing isotopic analysis method, these compounds are converted into carbon oxide or dioxide [1]. At this point, the average carbon content in the given compound is determined, but information about isotope-modified centers is lost. Dilution may occur through the transfer of other carbon-containing organic compounds in the sample or by dilution with natural carbon or carbon dioxide during the transfer process. This article discusses the possibility of carbon-13 isotope propagation directly in these compounds, both completely modified and modified with individual carbon centers. The literature provides information on determining carbon-13 substance in organic compounds, both with a general approach and for individual compounds [2] [3].
基金the National Natural Science Foundation of China(2180212552074244)+2 种基金the Central Plains Science and Technology Innovation Leader Project(214200510006)Henan Outstanding Foreign Scientists,Workroom(GZS2018004)and the National Key R&D Program of China(2022YFC2104505)the Program of Henan Center for Oustanding Overseas Scientists(No.GZS2022007)for the financial support.
文摘Isomerization of glucose to fructose is a fundamental and key intermediate process commonly included in the production of valuable chemicals from carbohydrates in biorefinery.Enhancement of fructose yield is a challenge.In this work,Sn-doped silica nanotube(Sn-SNT)was developed as a highly efficient Lewis acid catalyst for the selective isomerization of glucose to fructose.Over Sn-SNT,69.1%fructose yield with 78.5%selectivity was obtained after reaction at 110◦C for 6 h.The sole presence of a large amount of Lewis acid sites in Sn-SNT without Brønsted acid site is one of the reasons for the high fructose yield and selectivity.Otherwise,high density of SiOH groups in Sn-SNT can ensure the presence of SiOH groups near the Sn sites,which is important for the isomerization of glucose to fructose,leading to the high fructose yield and selectivity.Furthermore,the Sn-SNT is recyclable.
基金Supported by Instituto de Ciencia,Tecnología e Innovación–Gobierno del Estado de Michoacán,No.ICTI-PICIR23-063,No.ICTIPICIR23-028Programa Proyectos de Investigación financiados 2024,Coordinación de Investigación Científica,Universidad Michoacana de San Nicolás de Hidalgo,México.
文摘High-saturated fat(HF)or high-fructose(HFr)consumption in children predispose them to metabolic syndrome(MetS).In rodent models of MetS,diets containing individually HF or HFr lead to a variable degree of MetS.Nevertheless,simultaneous intake of HF plus HFr have synergistic effects,worsening MetS outcomes.In children,the effects of HF or HFr intake usually have been addressed individually.Therefore,we have reviewed the outcomes of HF or HFr diets in children,and we compare them with the effects reported in rodents.In humans,HFr intake causes increased lipogenesis,hypertriglyceridemia,obesity and insulin resistance.On the other hand,HF diets promote low grade-inflammation,obesity,insulin resistance.Despite the deleterious effects of simultaneous HF plus HFr intake on MetS development in rodents,there is little information about the combined effects of HF plus HFr intake in children.The aim of this review is to warn about this issue,as individually addressing the effects produced by HF or HFr may underestimate the severity of the outcomes of Western diet intake in the pediatric population.We consider that this is an alarming issue that needs to be assessed,as the simultaneous intake of HF plus HFr is common on fast food menus.
文摘The oxidations of D-fructose and D-lactose were monitored spectrophotometrically by potassium permanganate in acidic medium at λmax 545 nm. Reaction demonstrated that the two oxidative species of permanganate were involved in an acidic oxidation of the sugars. It was established that respective acids of sugars as well as arabinonic and formic acid were the oxidation products. Respective acids of sugars were the results of reactive oxygen species of permanganate ions in acidic conditions while arabinonic and formic acids due to the cleavage of C__C bond through MnO-4 species. It was first order kinetics with respect to [MnO-4 ], [fructose], [lactose] and [H+]. Hg was used to accelerate the slow oxidation of lactose. Effect of varying salt electrolyte concentration was insignificant showing that the molecular species was involved in the rate determining step. Formic and arabinonic acids and respective acids were analyzed through spot and spectroscopic studies respectively. Reaction was monitored at different temperatures and thermodynamics activation parameters were determined. A mechanism consistent with kinetic studies, spectral evidences, stoichiometry of the reactions and product analysis has been proposed for the oxidation of fructose and lactose in absence and presence of catalyst respectively.
文摘A correlation has been previously described between bifidobacteria counts before and after the use of a dietary additive in human studies. However, to our knowledge no information on this topic has yet been reported in animals, and no information exists either on similar possible correlations of bacterial groups other than bifidobacteria. The potential prebiotic effects of di-D-fructose dianhydride (DFA)-enriched caramels have been previously reported in laboratory animals, poultry and pigs. In the present work, twelve growing male castrated pigs (41.8 ± 1.9 kg mean BW) were fed in succession on a control (no additive) or DFA-enriched caramel (20 g/kg) containing diets. Another group of 10 pigs (38.0 ± 3.7 kg mean BW) fed on a control diet without any additive was used as negative control. Bacterial log10 number of copies of the 16S rRNA gene was determined in fecal samples by using qPCR. Increased (P10 number of copies were determined in fecal samples of pigs fed on the caramel containing diet compared with non-caramel controls. In addition, for all bacterial groups studied microbiological values co-variated with initial counts and, except for enterobacteria, variations in the fecal bacterial numbers after caramel supplementation correlated (P< 0.05) with the fecal numbers before supplementation. In conclusion, the supplementation of pig diets with DFA-enriched caramels induced significant increases in the fecal number of copies of bacterial groups regarded as beneficial, and variations in the fecal number of copies correlated with the initial fecal number of copies.
文摘Objective: To study the effects of sodium magnesiusm fructose diphosphate(FDPM) on brain damage of rats after ischemia-reperfusion. Methods: Rats were subjected to cerebral ischemia-reperfusion induced by inserting a nylon thread into internal carotid artery to block the origin of middle cerebral artery and removing the thread later. FDPM (400 mg·kg -1), fructose-1,6-diphosphate (FDP, 400 mg·kg -1)and magnesium sulfate (MgSO 4, 30 mg·kg -1) were administrated 10 min after the onset of ischemia. Neurological scale, brain infarct area, Malondialdehyde(MDA) content and histopathological changes of brain tissue were studied. Results: FDPM decreased neurological scale, diminished brain infarct area, reduced MDA content and relieved histopathological change of rat brain tissue subjected to ischemia-reperfusion. These effects were more powerful than that of FDP or MgSO 4. Conclusions: It is suggested that FDPM markedly prevented rats against brain damage after cerebral ischemia-reperfusion, and its effect was better than that of FDP or MgSO 4.
文摘The effect of tetrandrine (Tet) on the infarction area and volume of rat brain induced by middle cerebral artery occlusion (MCAO) was investigated. The treatment with Tet 7.5, 12.0 or 15.0 mg·kg 1 , or with fructose 1,6 diphosphate (FDP) 200 and 350 mg·kg 1 ip immediately after MCAO, respectively, significantly reduced the infarction area and volume in a dose dependent manner. MK801 and FDP also displayed a protective effect on brain ischemia. A combination of Tet and FDP administered immediately after MCAO, produced a more potent protective effect than those treated with Tet or FDP alone. When Tet or FDP was administered 1 h and 2 h after MCAO, respectively, they could still significantly reduce the infarction area and volume of brain tissue. But, there was no significant protective effect when these two compounds were given 3 h after MCAO.