期刊文献+
共找到1,457篇文章
< 1 2 73 >
每页显示 20 50 100
Application of seismic multi-attribute fusion method based on D-S evidence theory in prediction of CBM-enriched area 被引量:1
1
作者 祁雪梅 张绍聪 《Applied Geophysics》 SCIE CSCD 2012年第1期80-86,116,117,共9页
D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated... D-S evidence theory provides a good approach to fuse uncertain inlbrmation. In this article, we introduce seismic multi-attribute fusion based on D-S evidence theory to predict the coalbed methane (CBM) concentrated areas. First, we choose seismic attributes that are most sensitive to CBM content changes with the guidance of CBM content measured at well sites. Then the selected seismic attributes are fused using D-S evidence theory and the fusion results are used to predict CBM-enriched area. The application shows that the predicted CBM content and the measured values are basically consistent. The results indicate that using D-S evidence theory in seismic multi-attribute fusion to predict CBM-enriched areas is feasible. 展开更多
关键词 d-s evidence theory CBM seismic attributes thsion
下载PDF
Risk assessment of water security in Haihe River Basin during drought periods based on D-S evidence theory 被引量:7
2
作者 Qian-jin DONG Xia LIU 《Water Science and Engineering》 EI CAS CSCD 2014年第2期119-132,共14页
The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, d... The weights of the drought risk index (DRI), which linearly combines the reliability, resiliency, and vulnerability, are difficult to obtain due to complexities in water security during drought periods. Therefore, drought entropy was used to determine the weights of the three critical indices. Conventional simulation results regarding the risk load of water security during drought periods were often regarded as precise. However, neither the simulation process nor the DRI gives any consideration to uncertainties in drought events. Therefore, the Dempster-Shafer (D-S) evidence theory and the evidential reasoning algorithm were introduced, and the DRI values were calculated with consideration of uncertainties of the three indices. The drought entropy and evidential reasoning algorithm were used in a case study of the Haihe River Basin to assess water security risks during drought periods. The results of the new DRI values in two scenarios were compared and analyzed. It is shown that the values of the DRI in the D-S evidence algorithm increase slightly from the original results of Zhang et al. (2005), and the results of risk assessment of water security during drought periods are reasonable according to the situation in the study area. This study can serve as a reference for further practical application and planning in the Haihe River Basin, and other relevant or similar studies. 展开更多
关键词 risk assessment water security drought periods entropy d-s evidence theory evidential reasoning algorithm Haihe River Basin
下载PDF
Large Power Transformer Fault Diagnosis and Prognostic Based on DBNC and D-S Evidence Theory 被引量:3
3
作者 Gang Li Changhai Yu +3 位作者 Hui Fan Shuguo Gao Yu Song Yunpeng Liu 《Energy and Power Engineering》 2017年第4期232-239,共8页
Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operatio... Power transformer is a core equipment of power system, which undertakes the important functions of power transmission and transformation, and its safe and stable operation has great significance to the normal operation of the whole power system. Due to the complex structure of the transformer, the use of single information for condition-based maintenance (CBM) has certain limitations, with the help of advanced sensor monitoring and information fusion technology, multi-source information is applied to the prognostic and health management (PHM) of power transformer, which is an important way to realize the CBM of power transformer. This paper presents a method which combine deep belief network classifier (DBNC) and D-S evidence theory, and it is applied to the PHM of the large power transformer. The experimental results show that the proposed method has a high correct rate of fault diagnosis for the power transformer with a large number of multi-source data. 展开更多
关键词 Power Transformer PROGNOsTIC and Health Management (PHM) Deep BELIEF Network CLAssIFIER (DBNC) d-s evidence theory
下载PDF
EARLY WARNING MODEL OF NETWORK INTRUSION BASED ON D-S EVIDENCE THEORY 被引量:1
4
作者 TianJunfeng ZhaiJianqiang DuRuizhong HuangJiancai 《Journal of Electronics(China)》 2005年第3期261-267,共7页
Application of data fusion technique in intrusion detection is the trend of next- generation Intrusion Detection System (IDS). In network security, adopting security early warn- ing technique is feasible to effectivel... Application of data fusion technique in intrusion detection is the trend of next- generation Intrusion Detection System (IDS). In network security, adopting security early warn- ing technique is feasible to effectively defend against attacks and attackers. To do this, correlative information provided by IDS must be gathered and the current intrusion characteristics and sit- uation must be analyzed and estimated. This paper applies D-S evidence theory to distributed intrusion detection system for fusing information from detection centers, making clear intrusion situation, and improving the early warning capability and detection efficiency of the IDS accord- ingly. 展开更多
关键词 Intrusion detection Early warning Data fusion d-s evidence theory
下载PDF
Ubiquitous Computing Identity Authentication Mechanism Based on D-S Evidence Theory and Extended SPKI/SDSI 被引量:1
5
作者 孙道清 曹奇英 《Journal of Donghua University(English Edition)》 EI CAS 2008年第5期564-570,共7页
Ubiquitous computing systems typically have lots of security problems in the area of identity authentication by means of classical PKI methods. The limited computing resources, the disconnection network, the classific... Ubiquitous computing systems typically have lots of security problems in the area of identity authentication by means of classical PKI methods. The limited computing resources, the disconnection network, the classification requirements of identity authentication, the requirement of trust transfer and cross identity authentication, the bi-directional identity authentication, the security delegation and the simple privacy protection etc are all these unsolved problems. In this paper, a new novel ubiquitous computing identity authentication mechanism, named UCIAMdess, is presented. It is based on D-S Evidence Theory and extended SPKI/SDSI. D-S Evidence Theory is used in UCIAMdess to compute the trust value from the ubiquitous computing environment to the principal or between the different ubiquitous computing environments. SPKI-based authorization is expanded by adding the trust certificate in UCIAMdess to solve above problems in the ubiquitous computing environments. The identity authentication mechanism and the algorithm of certificate reduction are given in the paper to solve the multi-levels trust-correlative identity authentication problems. The performance analyses show that UCIAMdess is a suitable security mechanism in solving the complex ubiquitous computing problems. 展开更多
关键词 ubiquitous computing identity authentication mechanism d-s evidence theory sPKI/sDsI sECURITY
下载PDF
Fault Isolation of Light Rail Vehicle Suspension System Based on D-S Evidence Theory and Improvement Application Case 被引量:1
6
作者 Xiukun Wei Kun Guo +2 位作者 Limin Jia Guangwu Liu Minzheng Yuan 《Journal of Intelligent Learning Systems and Applications》 2013年第4期245-253,共9页
This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered ... This paper presents an innovative approach for the fault isolation of Light Rail Vehicle (LRV) suspension system based on the Dempster-Shafer (D-S) evidence theory and its improvement application case. The considered LRV has three rolling stocks and each one equips three sensors for monitoring the suspension system. A Kalman filter is applied to generate the residuals for fault diagnosis. For the purpose of fault isolation, a fault feature database is built in advance. The Eros and the norm distance between the fault feature of the new occurred fault and the one in the feature database are applied to measure the similarity of the feature which is the basis for the basic belief assignment to the fault, respectively. After the basic belief assignments are obtained, they are fused by using the D-S evidence theory. The fusion of the basic belief assignments increases the isolation accuracy significantly. The efficiency of the proposed method is demonstrated by two case studies. 展开更多
关键词 sUsPENsION system FAULT IsOLATION d-s evidence theory Information Fusion sIMILARITY Measurement
下载PDF
Fault diagnosis method of hydraulic system based on fusion of neural network and D-S evidence theory 被引量:2
7
作者 LIU Bao-jie YANG Qing-wen WU Xiang 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2016年第4期368-374,共7页
According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network e... According to fault type diversity and fault information uncertainty problem of the hydraulic driven rocket launcher servo system(HDRLSS) , the fault diagnosis method based on the evidence theory and neural network ensemble is proposed. In order to overcome the shortcomings of the single neural network, two improved neural network models are set up at the com-mon nodes to simplify the network structure. The initial fault diagnosis is based on the iron spectrum data and the pressure, flow and temperature(PFT) characteristic parameters as the input vectors of the two improved neural network models, and the diagnosis result is taken as the basic probability distribution of the evidence theory. Then the objectivity of assignment is real-ized. The initial diagnosis results of two improved neural networks are fused by D-S evidence theory. The experimental results show that this method can avoid the misdiagnosis of neural network recognition and improve the accuracy of the fault diagnosis of HDRLSS. 展开更多
关键词 multi sensor information fusion fault diagnosis d-s evidence theory BP neural network
下载PDF
Study on Power Transformers Fault Diagnosis Based on Wavelet Neural Network and D-S Evidence Theory
8
作者 LIANG Liu-ming CHEN Wei-gen +2 位作者 YUE Yan-feng WEI Chao YANG Jian-feng 《高电压技术》 EI CAS CSCD 北大核心 2008年第12期2694-2700,共7页
>Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in re... >Transformer faults are quite complicated phenomena and can occur due to a variety of reasons.There have been several methods for transformer fault synthetic diagnosis,but each of them has its own limitations in real fault diagnosis applications.In order to overcome those shortcomings in the existing methods,a new transformer fault diagnosis method based on a wavelet neural network optimized by adaptive genetic algorithm(AGA)and an improved D-S evidence theory fusion technique is proposed in this paper.The proposed method combines the oil chromatogram data and the off-line electrical test data of transformers to carry out fault diagnosis.Based on the fusion mechanism of D-S evidence theory,the comprehensive reliability of evidence is constructed by considering the evidence importance,the outputs of the neural network and the expert experience.The new method increases the objectivity of the basic probability assignment(BPA)and reduces the basic probability assigned for uncertain and unimportant information.The case study results of using the proposed method show that it has a good performance of fault diagnosis for transformers. 展开更多
关键词 小波神经网络 d-s证据理论 电力变压器 故障诊断 适应基因算法
下载PDF
A Heterogeneous Information Fusion Method for Maritime Radar and AIS Based on D-S Evidence Theory
9
作者 Chao Wu Qing Wu +1 位作者 Feng Ma Shuwu Wang 《Engineering(科研)》 2023年第12期821-842,共22页
Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However,... Maritime radar and automatic identification systems (AIS), which are essential auxiliary equipment for navigation safety in the shipping industry, have played significant roles in maritime safety supervision. However, in practical applications, the information obtained by a single device is limited, and it is necessary to integrate the information of maritime radar and AIS messages to achieve better recognition effects. In this study, the D-S evidence theory is used to fusion the two kinds of heterogeneous information: maritime radar images and AIS messages. Firstly, the radar image and AIS message are processed to get the targets of interest in the same coordinate system. Then, the coordinate position and heading of targets are chosen as the indicators for judging target similarity. Finally, a piece of D-S evidence theory based on the information fusion method is proposed to match the radar target and the AIS target of the same ship. Particularly, the effectiveness of the proposed method has been validated and evaluated through several experiments, which proves that such a method is practical in maritime safety supervision. 展开更多
关键词 d-s evidence theory Heterogeneous Information Fusion Radar Image AIs Message
下载PDF
Application of evidence theory in information fusion of multiple sources in bayesian analysis 被引量:4
10
作者 周忠宝 蒋平 武小悦 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第4期461-463,共3页
How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form cou... How to obtain proper prior distribution is one of the most critical problems in Bayesian analysis. In many practical cases, the prior information often comes from different sources, and the prior distribution form could be easily known in some certain way while the parameters are hard to determine. In this paper, based on the evidence theory, a new method is presented to fuse the information of multiple sources and determine the parameters of the prior distribution when the form is known. By taking the prior distributions which result from the information of multiple sources and converting them into corresponding mass functions which can be combined by Dempster-Shafer (D-S) method, we get the combined mass function and the representative points of the prior distribution. These points are used to fit with the given distribution form to determine the parameters of the prior distribution. And then the fused prior distribution is obtained and Bayesian analysis can be performed. How to convert the prior distributions into mass functions properly and get the representative points of the fused prior distribution is the central question we address in this paper. The simulation example shows that the proposed method is effective. 展开更多
关键词 Bayesian analysis evidence theory d-s method information fusion
下载PDF
基于D-S证据理论的岩爆预测方法研究 被引量:1
11
作者 高永涛 朱强 +1 位作者 吴顺川 王勇兵 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期244-251,共8页
为了有效预测岩爆,提出基于D-S证据理论的岩爆预测方法.首先,选取与岩爆发生相关的6个指标因素作为证据体,并通过模糊物元框架和正态型隶属度函数构建证据体的基本概率分配.然后,利用K均值将证据体分类,并提出簇内证据用传统方式融合而... 为了有效预测岩爆,提出基于D-S证据理论的岩爆预测方法.首先,选取与岩爆发生相关的6个指标因素作为证据体,并通过模糊物元框架和正态型隶属度函数构建证据体的基本概率分配.然后,利用K均值将证据体分类,并提出簇内证据用传统方式融合而簇间证据用权重方式融合的组合融合规则,以减轻高冲突证据融合的不利影响.最后,将模型应用在秦岭终南山公路隧道2号竖井工程,且与经验方法对比.为了分析预测过程的不确定性和估计岩爆发生概率,采用蒙特卡洛模拟进行抽样仿真,并通过Spearman秩相关系数衡量输入指标的全局敏感性.研究结果表明:输入指标在不同的岩爆案例的影响程度差异较大且方向不同;5个岩爆案例的发生概率在40.8%~70.1%之间.该模型表现出优异的预测分类性能,可为深埋地下工程岩爆预测提供参考. 展开更多
关键词 岩石力学 岩爆预测 d-s证据理论 模糊物元 K均值
下载PDF
D-S证据理论在空中目标识别中的应用现状与展望
12
作者 余付平 黄益恒 +2 位作者 沈堤 李靖宇 房瑞跃 《电光与控制》 CSCD 北大核心 2024年第4期75-86,共12页
D-S证据理论作为一种多源信息融合工具,在空中目标识别领域中得到了广泛应用。对D-S证据理论进行了概述;简要梳理了D-S证据理论在空中目标识别领域中的发展脉络,并提出应用中需要解决的三类关键问题;围绕上述问题,重点对该领域中的BPA... D-S证据理论作为一种多源信息融合工具,在空中目标识别领域中得到了广泛应用。对D-S证据理论进行了概述;简要梳理了D-S证据理论在空中目标识别领域中的发展脉络,并提出应用中需要解决的三类关键问题;围绕上述问题,重点对该领域中的BPA获取、证据冲突度量、证据融合的应用现状进行综述;最后,基于空域控制视角,对D-S证据理论在该领域中的应用进行了展望。研究可为空中目标识别领域的理论发展和工程应用提供参考。 展开更多
关键词 空中目标识别 d-s证据理论 BPA 证据冲突 证据融合
下载PDF
D-S理论和Markov链组合的桥梁性能退化预测研究
13
作者 杨国俊 田里 +2 位作者 唐光武 毛建博 杜永峰 《应用数学和力学》 CSCD 北大核心 2024年第4期416-428,共13页
为准确预测桥梁性能退化,考虑到数据随机性和微小扰动发生状态跳跃,提出了一种D-S(Dempster-Shafer)证据理论和Markov链组合的桥梁性能退化组合预测模型和性能退化率的概念.该模型基于指数平滑(exponential smoothing,ES)方法获得新的... 为准确预测桥梁性能退化,考虑到数据随机性和微小扰动发生状态跳跃,提出了一种D-S(Dempster-Shafer)证据理论和Markov链组合的桥梁性能退化组合预测模型和性能退化率的概念.该模型基于指数平滑(exponential smoothing,ES)方法获得新的预测数据序列,并利用Markov链和D-S理论不断进行优化,从而实现桥梁性能退化的组合预测.实际工程的应用结果表明:性能退化率可以直观地表征在梁性能退化的速度.其次,该模型的平均相对误差为1.54%,较于回归、灰色和模糊加权Markov链模型,精度分别提高了1.11%,0.88%和2.8%,而后验差比值为0.242,小于0.35;模型的标准差为9.021,相比其他模型分别减小了3.978,3.405和7.500,而变异系数为0.109,均小于其他模型,验证了组合预测模型在精度和稳定性方面的优越性,可为在役桥梁结构性能退化预测与维护提供理论基础. 展开更多
关键词 桥梁工程 性能退化预测 d-s证据理论 MARKOV链 组合预测模型 桥梁性能退化率
下载PDF
基于D-S证据理论的农作物气候品质预测方法研究:以晚熟杂交柑橘春见为例
14
作者 付世军 李梦 +6 位作者 杨晓兵 何震 袁佳阳 刘书慧 徐越 卢德全 张利平 《贵州农业科学》 CAS 2024年第5期122-132,共11页
【目的】基于多源气象数据构建果实品质(糖含量等级)预测模型,为科学评价果实气候品质及深入挖掘农产品气候资源提供科学依据。【方法】以晚熟柑橘春见果实为研究对象,利用多源数据融合技术、人工神经网络(BP神经网络、RBF神经网络和El... 【目的】基于多源气象数据构建果实品质(糖含量等级)预测模型,为科学评价果实气候品质及深入挖掘农产品气候资源提供科学依据。【方法】以晚熟柑橘春见果实为研究对象,利用多源数据融合技术、人工神经网络(BP神经网络、RBF神经网络和Elman神经网络)和D-S证据理论,包括气象数据质量控制、特征选取、特征级融合、决策级融合4个步骤,构建基于多源气象数据的果实品质(糖含量等级)预测模型。【结果】春见果实品质预测模型采用BP神经网络预测结果总体准确率为87.50%,平均绝对误差(MAE)为0.150,均方根误差(RMSE)为0.447;RBF神经网络预测结果总体准确率为85.00%,MAE为0.175,RMSE为0.474;Elman神经网络预测结果总体准确率为87.50%,MAE为0.150,RMSE为0.447;D-S证据理论决策融合总体预测准确率达95.20%,分别较BP神经网络、RBF神经网络和Elman神经网络提升7.7百分点、10.2百分点和7.7百分点,MAE和RMSE分别为0.040和0.214,均明显降低。【结论】D-S证据理论决策融合后的果实品质预测准确率相比单一神经网络预测更高、误差更小。 展开更多
关键词 晚熟柑橘 春见 气候品质 多源数据融合 BP神经网络 RBF神经网络 ELMAN神经网络 d-s证据理论
下载PDF
基于加权D-S证据理论的旋翼故障诊断
15
作者 高亚东 张传壮 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第1期66-75,共10页
旋翼作为直升机的升力面和操作面,其健康状态对直升机的安全至关重要。旋翼故障诊断技术仍是直升机健康与使用监测系统(Health and usage monitoring system, HUMS)领域的薄弱环节,开发旋翼故障诊断技术具有重要价值。基于信息融合技术... 旋翼作为直升机的升力面和操作面,其健康状态对直升机的安全至关重要。旋翼故障诊断技术仍是直升机健康与使用监测系统(Health and usage monitoring system, HUMS)领域的薄弱环节,开发旋翼故障诊断技术具有重要价值。基于信息融合技术,首先分析了旋翼故障的诊断机理,建立了旋翼故障模型,通过流固耦合仿真获取了不同故障下桨叶、轮毂和机身的故障特征信息,生成数据集进行网络训练和验证。然后,利用遗传算法反向传播(Genetic algorithm-backpropagation, GA-BP)优化神经网络诊断3种类型的直升机旋翼故障,即后缘调整片误调、变距拉杆误调和桨叶质量不平衡。3个逐级神经网络分别对旋翼故障类型、故障位置和故障程度进行了诊断识别。最后采用加权的Dempster-Shafer(D-S)证据理论对旋翼故障进行诊断和分析。结果证明基于改进D-S证据理论的旋翼故障诊断方法能够成功应用到旋翼故障诊断中,并具有良好的识别效果。 展开更多
关键词 旋翼系统 故障诊断 GA-BP神经网络 信息融合技术 d-s证据理论
下载PDF
基于D-S证据理论改进AHP-熵权的流域洪涝灾害评估研究
16
作者 苑希民 高瑞梅 +1 位作者 田福昌 侯玮 《水资源与水工程学报》 CSCD 北大核心 2024年第1期9-16,共8页
考虑致灾因子危险性、孕灾环境敏感性以及承灾体易损性,选取指标构建小清河流域洪涝灾害风险评估指标体系,提出一种基于D-S证据理论的改进AHP-熵权法计算指标权重,求取洪涝灾害风险指数,运用自然断点分级法确定洪涝灾害风险等级,分析小... 考虑致灾因子危险性、孕灾环境敏感性以及承灾体易损性,选取指标构建小清河流域洪涝灾害风险评估指标体系,提出一种基于D-S证据理论的改进AHP-熵权法计算指标权重,求取洪涝灾害风险指数,运用自然断点分级法确定洪涝灾害风险等级,分析小清河流域洪涝灾害风险空间分布情况。结果表明:小清河流域洪涝灾害风险总体上表现出南低北高的趋势,其中高风险区和较高风险区分别占流域面积的8.7%和14.3%,主要分布在小清河干流以及主要支流两岸。所得评估结果同“利奇马”台风发生期间实际洪灾风险分布情况一致,对比证明基于D-S证据理论的改进AHP-熵权法优于AHP和熵权法,可为小清河流域防洪减灾决策提供依据。 展开更多
关键词 d-s证据理论 AHP 熵权法 洪涝灾害评估 小清河流域
下载PDF
基于D-S证据理论的配电网接地故障原因综合辨识模型
17
作者 胡云鹏 都成刚 +4 位作者 齐军 郑日红 阿敏夫 张浩 梁永亮 《中国电力》 CSCD 北大核心 2024年第10期133-142,共10页
单相接地故障(single-phase-to-ground fault,SPGF)是配电网中最常见的故障,严重影响配电系统的可靠性和安全性,准确辨识SPGF可以提高配电网接地故障处理的精细化水平。首先,从故障波形中提取能有效反映不同接地故障原因的多域特征组成... 单相接地故障(single-phase-to-ground fault,SPGF)是配电网中最常见的故障,严重影响配电系统的可靠性和安全性,准确辨识SPGF可以提高配电网接地故障处理的精细化水平。首先,从故障波形中提取能有效反映不同接地故障原因的多域特征组成候选波形特征集,通过多元方差法分析波形特征与接地故障原因的相关性,筛选识别接地故障原因的有效特征;然后,分别设计基于极限学习机和支持向量机的故障原因辨识模型,利用Dempster-Shafer(D-S)证据融合理论对模型的识别结果进行融合,建立了接地故障原因综合辨识模型;最后,基于现场数据对所建立的综合辨识模型的有效性进行了验证,结果表明综合辨识模型优于任何单一辨识模型,验证了该模型的优势和可行性。 展开更多
关键词 接地故障原因 单相接地故障 极限学习机 支持向量机 d-s证据理论
下载PDF
改进YOLOv7-tiny与D-S理论结合的实验室人员行为检测研究
18
作者 杨永亮 曹敏 +4 位作者 徐凌桦 王霄 杨靖 王涛 冯平平 《现代电子技术》 北大核心 2024年第19期153-160,共8页
针对目前实验室场景缺少对人员行为检测的方法,且主流算法精度低、误检率高的问题,文中提出一种改进YOLOv7-tiny的人员行为检测算法,并通过多源信息融合,提高人员行为在实际实验室场景中的识别准确率。首先,在检测算法主干网络引入Ghost... 针对目前实验室场景缺少对人员行为检测的方法,且主流算法精度低、误检率高的问题,文中提出一种改进YOLOv7-tiny的人员行为检测算法,并通过多源信息融合,提高人员行为在实际实验室场景中的识别准确率。首先,在检测算法主干网络引入GhostNetV2轻量化网络,进一步降低模型计算量和复杂度;其次,在颈部网络嵌入改进后的CBAM_E注意力模块,加强目标重要特征的提取;再次,在预测端使用SIoU替换原有的损失函数,减少角度因素和边界框回归精度的影响。检测结果表明,相较于YOLOv7-tiny,文中算法精度提升10.08%,模型参数量和复杂度分别下降36.45%和46.76%。最后通过将检测数据与传感器采集数据运用D-S证据理论进行信息融合后发现,人员不规范行为检测的误检率得到有效降低。结果表明,该方法可实现对实验室人员不规范行为的有效检测。 展开更多
关键词 实验室场景 人员行为 YOLOv7-tiny 轻量化网络 注意力模块 损失函数 d-s证据理论 信息融合
下载PDF
基于改进D-S理论的多时刻空中目标威胁评估
19
作者 李山 权文 +2 位作者 李昉 苏力德 黄呈祥 《电光与控制》 CSCD 北大核心 2024年第3期48-52,共5页
针对单时刻空中目标威胁评估存在的抗干扰能力弱、可靠性不足等问题,建立一种基于改进D-S证据理论的多时刻空中目标威胁评估模型。首先,根据空战时间线,定义多时刻空中目标威胁评估时段范围;然后,在单时刻空中目标威胁等级概率分配基础... 针对单时刻空中目标威胁评估存在的抗干扰能力弱、可靠性不足等问题,建立一种基于改进D-S证据理论的多时刻空中目标威胁评估模型。首先,根据空战时间线,定义多时刻空中目标威胁评估时段范围;然后,在单时刻空中目标威胁等级概率分配基础上,利用D-S证据理论融合各时刻证据信息;同时,针对D-S证据理论不能处理高冲突证据的弊端及其现有改进方法计算量较大的不足,引入偏移度的概念,确定各时刻证据源权重,对加权证据进行D-S融合。数值算例表明,该模型算法复杂度低;能有效处理波动数据、稳定性强,并且可减弱高冲突证据融合对威胁评估带来的不利影响,为最终决策提供了更准确的判别依据。 展开更多
关键词 威胁评估 空中目标 d-s证据理论 偏移度
下载PDF
基于改进D-S证据理论选择性集成的边坡稳定性评价
20
作者 张化进 吴顺川 李兵磊 《金属矿山》 CAS 北大核心 2024年第9期229-236,共8页
针对边坡稳定性预测算法选择困难和单个模型误判风险大的问题,建立了基于改进D-S证据理论选择性集成的边坡稳定性评价方法,为边坡稳定性初步评价提供方法依据。基于边坡稳定性主要影响因素,通过极限平衡法构建了大型边坡稳定性评价数据... 针对边坡稳定性预测算法选择困难和单个模型误判风险大的问题,建立了基于改进D-S证据理论选择性集成的边坡稳定性评价方法,为边坡稳定性初步评价提供方法依据。基于边坡稳定性主要影响因素,通过极限平衡法构建了大型边坡稳定性评价数据集。引入基于边界距离最小化的基学习器选择技术,提升选择性集成模型的泛化能力。提出了改进D-S证据理论融合基学习器信息,降低了选择性集成模型决策过程中的不确定性和模糊性,解决了现有边坡稳定性评价模型易误判和结果非一致性问题。仿真试验结果表明:改进D-S证据理论选择性集成方法无需复杂的数值建模与计算迭代过程,可直接客观地评判边坡稳定性状态,并从信息论角度给出边坡失稳概率。对比传统机器学习方法,该方法有效提高了边坡稳定性的预测准确率,同时降低了预测结果的不确定性,实现了速度快、精度高、稳健性好的广域尺度边坡稳定性评价。 展开更多
关键词 边坡稳定性 d-s证据理论 集成学习 选择性集成 失稳概率
下载PDF
上一页 1 2 73 下一页 到第
使用帮助 返回顶部