The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical mode...The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical model for flood routing in the river network Of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.展开更多
In the oil and gas industry, operations in greenfield sites are straightforward. However, there are increased risks, such as damage to existing facilities, unknown site conditions, and other complexities in brownfield...In the oil and gas industry, operations in greenfield sites are straightforward. However, there are increased risks, such as damage to existing facilities, unknown site conditions, and other complexities in brownfield sites. In addition to these physical risks, task scheduling is also complex, as vessels need to be replaced during a turnaround. To mitigate the risks of site conditions and realize a truncated schedule for Saudi Aramco’s operations, 3D laser scanning was combined with 3D modeling, clash detection, and time. This integrated approach minimized the shutdown period, which resulted in cost savings, heightened safety, and enhanced stakeholder communications.展开更多
In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equati...In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.展开更多
基金supported by the National Key Technologies Research and Development Program (Grant No. 2006BAB05B02)
文摘The main stream of the Yangtze River, Dongting Lake, and the river network in the Jingjiang reach of the Yangtze River constitute a complex water system. This paper develops a one-dimensional (l-D) mathematical model for flood routing in the river network Of the Jingjiang River and Dongting Lake using the explicit finite volume method. Based on observed data during the flood periods in 1996 and 1998, the model was calibrated and validated, and the results show that the model is effective and has high accuracy. In addition, the one-dimensional mathematical model for the river network and the horizontal two-dimensional (2-D) mathematical model for the Jingjiang flood diversion area were coupled to simulate the flood process in the Jingjiang River, Dongting Lake, and the Jingjiang flood diversion area. The calculated results of the coupled model are consistent with the practical processes. Meanwhile, the results show that the flood diversion has significant effects on the decrease of the peak water level at the Shashi and Chenjiawan hydrological stations near the flood diversion gates, and the effect is more obvious in the downstream than in the upstream.
文摘In the oil and gas industry, operations in greenfield sites are straightforward. However, there are increased risks, such as damage to existing facilities, unknown site conditions, and other complexities in brownfield sites. In addition to these physical risks, task scheduling is also complex, as vessels need to be replaced during a turnaround. To mitigate the risks of site conditions and realize a truncated schedule for Saudi Aramco’s operations, 3D laser scanning was combined with 3D modeling, clash detection, and time. This integrated approach minimized the shutdown period, which resulted in cost savings, heightened safety, and enhanced stakeholder communications.
基金financially supported by the Science and Technology Project of the Ministry of Transport(Grant No.2013328352570)
文摘In order to accurately simulate strong three-dimensional (3-D) free surface flows and sediment transport, the fully 3- D non-hydrostatic pressure models are developed based on the incompressible Navier-Stokes equations and convection-diffusion equation of sediment concentration with the mixing triangle and quadrilateral grids. The governing equations are discretized with the unstructured finite volume method in order to provide conservation properties of mass and momentum, and flexibility with practical application. It is shown that it is first-order accurate on nonuniform plane two-dimensional (2-D) grids and second-order accurate on uniform plane grids. A third-order approximation of the vertical velocity at the top-layer is applied. In such a way, free surface zero stress boundary condition is satisfied maturely, and very few vertical layers are needed to give an accurate solution even for complex discontinuous flow and short wave simulation. The model is applied to four examples to simulate strong 3-D free surface flows and sediment transport where non-hydrostatic pressures have a considerable effect on the velocity field. The newly developed model is verified against analytical solutions with an excellent agreement.
基金supported by National Basic Research Program of China (973 Program,2002CB111405)the National Nature Science Foundation ofChina (30471162, 30671394)the National Key Technologies Research and Development Program of China(2006BAD08A13)~~