Cable fire is one of the most important events for operation and maintenance(O&M)safety in underground utility tunnels(UUTs).Since there are limited studies about cable fire risk assessment,a comprehensive assessm...Cable fire is one of the most important events for operation and maintenance(O&M)safety in underground utility tunnels(UUTs).Since there are limited studies about cable fire risk assessment,a comprehensive assessment model is proposed to evaluate the cable fire risk in different UUT sections and improve O&M efficiency.Considering the uncertainties in the risk assessment,an evidential reasoning(ER)approach is used to combine quantitative sensor data and qualitative expert judgments.Meanwhile,a data transformation technique is contributed to transform continuous data into a five-grade distributed assessment.Then,a case study demonstrates how the model and the ER approach are established.The results show that in Shenzhen,China,the cable fire risk in District 8,B Road is the lowest,while more resources should be paid in District 3,C Road and District 25,C Road,which are selected as comparative roads.Based on the model,a data-driven O&M process is proposed to improve the O&M effectiveness,compared with traditional methods.This study contributes an effective ER-based cable fire evaluation model to improve the O&M efficiency of cable fire in UUTs.展开更多
The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evident...The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.展开更多
Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application ...Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application of multi-source data becomes necessary.This paper presents an evidential reasoning (ER) approach to incorporate Landsat TM imagery,altitude and slope data.Results show that multi-source data contribute to the classification accuracy achieved by the ER method,whereas play a negative role to that derived by maximum likelihood classifier (MLC).In comparison to the results derived based on TM imagery alone,the overall accuracy rate of the ER method increases by 7.66% and that of the MLC method decreases by 8.35% when all data sources (TM plus altitude and slope) are accessible.The ER method is regarded as a better approach for multi-source image classification.In addition,the method produces not only an accurate classification result,but also the uncertainty which presents the inherent difficulty in classification decisions.The uncertainty associated to the ER classification image is evaluated and proved to be useful for improved classification accuracy.展开更多
A variable weight approach was proposed to handle the probability deficiency problem in the evidential reasoning (ER) approach. The probability deficiency problem indicated that the inadequate information in the ass...A variable weight approach was proposed to handle the probability deficiency problem in the evidential reasoning (ER) approach. The probability deficiency problem indicated that the inadequate information in the assessment result should be less than that in the input. However, it was proved that under certain circumstances, the ER approach could not solve the probability deficiency problem. The variable weight approach was based on two assumptions: 1) the greater weight should be given to the rule with more adequate information; 2) the greater weight should be given to the rules with less disparate information. Assessment results of two notional case studies show that 1) the probability deficiency problem is solved using the proposed variable weight approach, and 2) the information with less inadequacy and more disparity is provided for the decision makers to help reach a consensus.展开更多
An integration-centric approach is proposed to handle inadequate information in the system readiness level (SRL) assessment using the evidential reasoning (ER) algorithm. Current SRL assessment approaches cannot b...An integration-centric approach is proposed to handle inadequate information in the system readiness level (SRL) assessment using the evidential reasoning (ER) algorithm. Current SRL assessment approaches cannot be applied to handle inadequate information as the input. The ER-based approach is proposed to synthesize inadequate input information and an integration-centric perspective is applied to reduce the computational complexity. Two case studies are performed to validate the efficiency of the proposed approach. And these studies are also performed to study how the inadequate information will affect the assessment result. And the differences caused by the system's structure. The importance of the system's structure in the SRL assessment is demonstrated and the contributions made in this study are summarized as conclusions.展开更多
Bayesian statistics assigns basic probabilities to singletons (single element sets). The Dempster-Shafer evidence theory generalizes Bayesian statistics by assigning basic probabilities to subsets to represent evide...Bayesian statistics assigns basic probabilities to singletons (single element sets). The Dempster-Shafer evidence theory generalizes Bayesian statistics by assigning basic probabilities to subsets to represent evidence and to develop evidential reasoning. This paper discusses what is the strength of evidence theory. As an application of evidence theory, evidential reasoning in air battle systems is discussed. In the air battle system, evidential reasoning is applied to fuse the muitisensor iaformation and identify the type of aircraft. The effectiveness of this fusion approach is evaluated by simulated data.展开更多
The traditional clustering algorithm is difficult to deal with the identification and division of uncertain objects distributed in the overlapping region,and aimed at solving this problem,the Evidential Clustering bas...The traditional clustering algorithm is difficult to deal with the identification and division of uncertain objects distributed in the overlapping region,and aimed at solving this problem,the Evidential Clustering based on General Mixture Decomposition Algorithm(GMDA-EC)is proposed.First,the belief classification of target cluster is carried out,and the sample category of target distribution overlapping region is extended.Then,on the basis of General Mixture Decomposition Algorithm(GMDA)clustering,the fusion model of evidence credibility and evidence relative entropy is constructed to generate the basic probability assignment of the target and achieve the belief division of the target.Finally,the performance of the algorithm is verified by the synthetic dataset and the measured dataset.The experimental results show that the algorithm can reflect the uncertainty of target clustering results more comprehensively than the traditional probabilistic partition clustering algorithm.展开更多
基金Airport New City Utility Tunnel PhaseⅡProject,China。
文摘Cable fire is one of the most important events for operation and maintenance(O&M)safety in underground utility tunnels(UUTs).Since there are limited studies about cable fire risk assessment,a comprehensive assessment model is proposed to evaluate the cable fire risk in different UUT sections and improve O&M efficiency.Considering the uncertainties in the risk assessment,an evidential reasoning(ER)approach is used to combine quantitative sensor data and qualitative expert judgments.Meanwhile,a data transformation technique is contributed to transform continuous data into a five-grade distributed assessment.Then,a case study demonstrates how the model and the ER approach are established.The results show that in Shenzhen,China,the cable fire risk in District 8,B Road is the lowest,while more resources should be paid in District 3,C Road and District 25,C Road,which are selected as comparative roads.Based on the model,a data-driven O&M process is proposed to improve the O&M effectiveness,compared with traditional methods.This study contributes an effective ER-based cable fire evaluation model to improve the O&M efficiency of cable fire in UUTs.
基金supported by the National Natural Science Foundation of China(7077111570921001)and Key Project of National Natural Science Foundation of China(70631004)
文摘The weights of criteria are incompletely known and the criteria values are incomplete and uncertain or even default in some fuzzy multi-criteria decision-making problems.For those problems,an approach based on evidential reasoning is proposed,in which the criteria values are integrated on the basis of analytical algorithm of evidential reasoning,and then nonlinear programming models of each alternative are developed with the incomplete information on weights.The genetic algorithm is employed to solve the models,producing the weights and the utility interval of each alternative,and the ranking of the whole set of alternatives can be attained.Finally,an example shows the effectiveness of the method.
基金Under the auspices of National Natural Science Foundation of China (No.40871188)Knowledge Innovation Programs of Chinese Academy of Sciences (No.INFO-115-C01-SDB4-05)
文摘Land cover classification is the core of converting satellite imagery to available geographic data.However,spectral signatures do not always provide enough information in classification decisions.Thus,the application of multi-source data becomes necessary.This paper presents an evidential reasoning (ER) approach to incorporate Landsat TM imagery,altitude and slope data.Results show that multi-source data contribute to the classification accuracy achieved by the ER method,whereas play a negative role to that derived by maximum likelihood classifier (MLC).In comparison to the results derived based on TM imagery alone,the overall accuracy rate of the ER method increases by 7.66% and that of the MLC method decreases by 8.35% when all data sources (TM plus altitude and slope) are accessible.The ER method is regarded as a better approach for multi-source image classification.In addition,the method produces not only an accurate classification result,but also the uncertainty which presents the inherent difficulty in classification decisions.The uncertainty associated to the ER classification image is evaluated and proved to be useful for improved classification accuracy.
基金Foundation item: Projects(70901074, 71001104, 71201168) supported by the National Natural Science Foundation of China
文摘A variable weight approach was proposed to handle the probability deficiency problem in the evidential reasoning (ER) approach. The probability deficiency problem indicated that the inadequate information in the assessment result should be less than that in the input. However, it was proved that under certain circumstances, the ER approach could not solve the probability deficiency problem. The variable weight approach was based on two assumptions: 1) the greater weight should be given to the rule with more adequate information; 2) the greater weight should be given to the rules with less disparate information. Assessment results of two notional case studies show that 1) the probability deficiency problem is solved using the proposed variable weight approach, and 2) the information with less inadequacy and more disparity is provided for the decision makers to help reach a consensus.
基金supported by the National Natural Science Foundation of China (70901074 71001104)
文摘An integration-centric approach is proposed to handle inadequate information in the system readiness level (SRL) assessment using the evidential reasoning (ER) algorithm. Current SRL assessment approaches cannot be applied to handle inadequate information as the input. The ER-based approach is proposed to synthesize inadequate input information and an integration-centric perspective is applied to reduce the computational complexity. Two case studies are performed to validate the efficiency of the proposed approach. And these studies are also performed to study how the inadequate information will affect the assessment result. And the differences caused by the system's structure. The importance of the system's structure in the SRL assessment is demonstrated and the contributions made in this study are summarized as conclusions.
基金Specialized Research Fund for the Doctoral Program of Higher Education,China(No.20060183041)
文摘Bayesian statistics assigns basic probabilities to singletons (single element sets). The Dempster-Shafer evidence theory generalizes Bayesian statistics by assigning basic probabilities to subsets to represent evidence and to develop evidential reasoning. This paper discusses what is the strength of evidence theory. As an application of evidence theory, evidential reasoning in air battle systems is discussed. In the air battle system, evidential reasoning is applied to fuse the muitisensor iaformation and identify the type of aircraft. The effectiveness of this fusion approach is evaluated by simulated data.
基金co-supported by the Youth Foundation of National Science Foundation of China(No.62001503)the Excellent Youth Scholar of the National Defense Science and Technology Foundation of China(No.2017-JCJQ-ZQ-003)the Special Fund for Taishan Scholar Project,China(No.ts201712072)。
文摘The traditional clustering algorithm is difficult to deal with the identification and division of uncertain objects distributed in the overlapping region,and aimed at solving this problem,the Evidential Clustering based on General Mixture Decomposition Algorithm(GMDA-EC)is proposed.First,the belief classification of target cluster is carried out,and the sample category of target distribution overlapping region is extended.Then,on the basis of General Mixture Decomposition Algorithm(GMDA)clustering,the fusion model of evidence credibility and evidence relative entropy is constructed to generate the basic probability assignment of the target and achieve the belief division of the target.Finally,the performance of the algorithm is verified by the synthetic dataset and the measured dataset.The experimental results show that the algorithm can reflect the uncertainty of target clustering results more comprehensively than the traditional probabilistic partition clustering algorithm.
基金supported by National Natural Science Foundation of China under Grant (60673084)Hunan Provincial Natural Science Foundation of China (06JJ4075, 04JJ6034)