The stability of differential-algebraic equations (DAEs) was analyzed using singularity induced bifurcation (SIB) with one parameter. This kind of bifurcation arises in parameter-dependent DAEs having the form x·...The stability of differential-algebraic equations (DAEs) was analyzed using singularity induced bifurcation (SIB) with one parameter. This kind of bifurcation arises in parameter-dependent DAEs having the form x·=f, 0=g. Extended DAE system reduction is introduced as a convenient method to compute the SIB points. Non-degeneracy conditions on the function g are needed. Aften verifying these conditions, the extended DAE system can be solved as an ODE by applying the implicit function theorem near the equilibrium point of the extended DAE system. These equilibrium points in turn include the SIB points of the original DAEs. The study of SIB points enables analysis of power system stability problems.展开更多
We investigate an important relationship that exists between the Hopf bifurcation in the singularly perturbed nonlinear power systems and the singularity induced bifurcations (SIBs) in the corresponding different- tia...We investigate an important relationship that exists between the Hopf bifurcation in the singularly perturbed nonlinear power systems and the singularity induced bifurcations (SIBs) in the corresponding different- tial-algebraic equations (DAEs). In a generic case, the SIB phenomenon in a system of DAEs signals Hopf bifurcation in the singularly perturbed systems of ODEs. The analysis is based on the linear matrix pencil theory and polynomials with parameter dependent coefficients. A few numerical examples are included.展开更多
During the simulation of constrained multibody system,numerical integration is important for solving the Euler-Lagrange equation of multibody system dynamics,which is usually a Differential-Algebraic Equations(DAEs).U...During the simulation of constrained multibody system,numerical integration is important for solving the Euler-Lagrange equation of multibody system dynamics,which is usually a Differential-Algebraic Equations(DAEs).Using the discrete Hamilton principle,discrete EulerLagrangian equation is obtained first based on Lagrange Interpolation.Then the Romberg,Gauss integral is used to solve the DAEs.At last,numerical results are compared by using Euler method,Runge-Kutta method,Romberg method and Gauss method for a double pendulum system.展开更多
基金Supported by the National Special Fund for Key BasicResearch of China(No.19980 2 0 30 9)
文摘The stability of differential-algebraic equations (DAEs) was analyzed using singularity induced bifurcation (SIB) with one parameter. This kind of bifurcation arises in parameter-dependent DAEs having the form x·=f, 0=g. Extended DAE system reduction is introduced as a convenient method to compute the SIB points. Non-degeneracy conditions on the function g are needed. Aften verifying these conditions, the extended DAE system can be solved as an ODE by applying the implicit function theorem near the equilibrium point of the extended DAE system. These equilibrium points in turn include the SIB points of the original DAEs. The study of SIB points enables analysis of power system stability problems.
文摘We investigate an important relationship that exists between the Hopf bifurcation in the singularly perturbed nonlinear power systems and the singularity induced bifurcations (SIBs) in the corresponding different- tial-algebraic equations (DAEs). In a generic case, the SIB phenomenon in a system of DAEs signals Hopf bifurcation in the singularly perturbed systems of ODEs. The analysis is based on the linear matrix pencil theory and polynomials with parameter dependent coefficients. A few numerical examples are included.
基金National Natural Science Foundation of China(11272166,11472143,11472144)
文摘During the simulation of constrained multibody system,numerical integration is important for solving the Euler-Lagrange equation of multibody system dynamics,which is usually a Differential-Algebraic Equations(DAEs).Using the discrete Hamilton principle,discrete EulerLagrangian equation is obtained first based on Lagrange Interpolation.Then the Romberg,Gauss integral is used to solve the DAEs.At last,numerical results are compared by using Euler method,Runge-Kutta method,Romberg method and Gauss method for a double pendulum system.