In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Base...In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.展开更多
An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an externa...An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.展开更多
DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model...DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model are also addressed to combine with neuro-robust control approach. It is shown that with the proposed control algorithms, external disturbances and coupled dynamics inherent in the system are effectively compensated using neural network unit in which no analytical estimation on the upper bound of the reconstruction error and uncertainties is needed. Simulations on various flight conditions also confirm the effectiveness of the proposed methods.展开更多
Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of ...Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.展开更多
In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural n...In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.展开更多
An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutat...An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutation strategy during acceleration and deceleration.This article also builds a complete brushless DC motor drive system based on the GD32F103 micro control unit(MCU),with an Artix-7 XC7A35T field programmable gate array(FPGA)to meet the performance requirements of neural network calculation for real-time motor commutation control.Experimental results show that the proposed optimization strategy can effectively improve the system stability during system acceleration and deceleration,and reduce the current spikes generated during speed chan-ges.The system power consumption is reduced by about 11.7%on average.展开更多
Presents the simulation and analysis of the steady state characteristic of a brushless DC motor studies the torque current characteristic of the motor as well and discusses the design of a current measure circuit for ...Presents the simulation and analysis of the steady state characteristic of a brushless DC motor studies the torque current characteristic of the motor as well and discusses the design of a current measure circuit for torque controlling.展开更多
The speed regulation problem with only speed measurement is investigated in this paper for a permanent magnet direct current(DC)motor driven by a buck converter.By lumping all unknown matched/unmatched disturbances an...The speed regulation problem with only speed measurement is investigated in this paper for a permanent magnet direct current(DC)motor driven by a buck converter.By lumping all unknown matched/unmatched disturbances and uncertainties together,the traditional active disturbance rejection control(ADRC)approach provides an intuitive solution for the problem under consideration.However,for such a higher-order disturbed system,the increase of poles for the extended state observer(ESO)therein will lead to drastically growth of observer gains,which causes severe noise amplification.This paper aims to propose a new model-based disturbance rejection controller for the converter-driven DC motor system using output-feedback.Instead of estimating lumped disturbances directly,a new observer is constructed to estimate the desired steady state of control signal as well as errors between the real states and their desired steady-state responses.Thereafter,a controller with only speed measurement is proposed by utilizing the estimates.The performance of the proposed method is tested through experiments on dSPACE.It is further shown via numerical calculations and experimental results that the poles of the observer within the proposed control approach can be largely increased without significantly increasing magnitude of the observer gains.展开更多
In industries DC motor drives are very essential due to their high performance applications such as its reliability, ease of control, low cost and simplicity. And speed control of these motors is very easy due to powe...In industries DC motor drives are very essential due to their high performance applications such as its reliability, ease of control, low cost and simplicity. And speed control of these motors is very easy due to power electronic AC-DC converters. These power electronic converters are with prominent low power factor and higher Total Harmonic Distortion (THD). These converters operate only for short time resulting non-sinusoidal waveform. This problem of harmonic distortion can be mitigated by reshaping the non-sinusoidal waveform to pure sine wave. Different wave shaping techniques have been developed by using different filters among which one is tuned passive filter. This paper proposed power factor improvement and harmonic mitigation of AC-DC converters based on separately excited DC motor using tuned passive filter. In this context experimental model is designed and results are analyzed by power quality analyzer.展开更多
The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structur...The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structure of the conventional six-switch three phase inverter. In this proposed method, a new structure of four-switch three phase inverter [1] with reduced number of switches for system is introduced to reduce the mechanical commutation, switching losses that occur in the six-switch method. The proposed inverter fed brushless DC motor used in sensorless control schemes which is used for sensing positioning signals. To improve sensor less control performance, four-switch electronic commutation modes based proportional intergral controller scheme is implemented. In this four-switch three phase inverter reduction of switches, low cost control and saving of hall sensor were incorporated. The feasibility of the proposed sensor less control four-switch three phase inverter fed brushless DC motor drive is implemented, analysed using MATLAB/SIMULINK, effective simulation results have been validated out successfully.展开更多
The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the...The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the high-power shipping during the design stage, the steady-state analysis is as important as the dynamic analysis generally. A mathematical model of the brushless DC propulsion motor is established according to the state-space method for the dynamic and steady-state performance analysis. The state-space mathematical model is a set of linear differential equations, so the steady-state currents of the armature windings can be gained directly by the symmetrical boundary conditions and the eigenvalues of the system matrix. The steady-state simulation results are compared with the dynamic ones to validate the correctness of this eigenvector method.展开更多
文摘In order to start up the brushless DC motor (BLDCM) without reverse rotation and smoothly switch the running state of the motor, a novel startup and smoothly switching method for a sensodess BLDCM is presented. Based on the saturation effect of the stator iron, six short voltage pulses are applied to determine the initial rotor position and the rotor can be found within 60°. After that, a series of short and long voltage pulses are used to accelerate the motor and the variation of the response current is utilized to detect the rotor position dynamically. When the motor reaches a certain speed at which the back-electromotive force (EMF) method can be applied, all the power devices are turned off and the running state of the motor is smoothly switched at the moment determined by the relationship between the terminal voltage waveform and the commutation phases. The experimental results verify the feasibility and validity of the proposed method.
文摘An improved single-neuron proportional integral derivative ( PID ) controller and a new method to build the DC motor system were presented in the article. In the simulation, the robot arm is considered as an external load to DC motor. Both the motor module and the load module are crea- ted in Simulink to achieve simulation results closer to real robot system. In this way, it can well veri- fy the performance of the improved single-neuron PID controller, which is a combined controller of normal PID controller and single-neuron PID controller. Besides, an intelligent switcher can help to realize the function of choosing a better control algorithm according to motor' s velocity output. Sim- ulated results confirm the rapid and stable response of the improved PID controller. Moreover, the improved single-neuron PID controller has an excellent ability to overcome the load impact and su- press the jamming signals. At last, a GUI interface platform is built to make the controller easier to be applied in other robot systems.
文摘DC motors are widely used in industry such as mechanics, robotics, and aerospace engineering. In this paper, we present a high performance control method for position control of DC motors. Fault-tolerant control model are also addressed to combine with neuro-robust control approach. It is shown that with the proposed control algorithms, external disturbances and coupled dynamics inherent in the system are effectively compensated using neural network unit in which no analytical estimation on the upper bound of the reconstruction error and uncertainties is needed. Simulations on various flight conditions also confirm the effectiveness of the proposed methods.
文摘Type-2 fuzzy logic systems have recently been utilized in many control processes due to their ability to model uncertainty. This research article proposes the position control of (DC) motor. The proposed algorithm of this article lies in the application of a genetic algorithm interval type-2 fuzzy logic controller (GAIT2FLC) in the design of fuzzy controller for the position control of DC Motor. The entire system has been modeled using MATLAB R11a. The performance of the proposed GAIT2FLC is compared with that of its corresponding conventional genetic algorithm type-1 FLC in terms of several performance measures such as rise time, peak overshoot, settling time, integral absolute error (IAE) and integral of time multiplied absolute error (ITAE) and in each case, the proposed scheme shows improved performance over its conventional counterpart. Extensive simulation studies are conducted to compare the response of the given system with the conventional genetic algorithm type-1 fuzzy controller to the response given with the proposed GAIT2FLC scheme.
文摘In order to guarantee quality during mass serial production of motors, a convenient approach on how to detect and diagnose the faults of a permanent-magnetic DC motor based on armature current analysis and BP neural networks was presented in this paper. The fault feature vector was directly established by analyzing the armature current. Fault features were extracted from the current using various signal processing methods including Fourier analysis, wavelet analysis and statistical methods. Then an advanced BP neural network was used to finish decision-making and separate fault patterns. Finally, the accuracy of the method in this paper was verified by analyzing the mechanism of faults theoretically. The consistency between the experimental results and the theoretical analysis shows that four kinds of representative faults of low power permanent-magnetic DC motors can be diagnosed conveniently by this method. These four faults are brush fray, open circuit of components, open weld of components and short circuit between armature coils. This method needs fewer hardware instruments than the conventional method and whole procedures can be accomplished by several software packages developed in this paper.
基金the National Key Research and Development Program(No.2017YFB0406204,2016YFC0105604)Beijing Science and Technology Projects(No.Z181100003818002)Science and Technology Service Network Initiative(No.FJ-STS-QYZX-099,KFJ-STS-ZDTP-069).
文摘An optimized commutation method based on backpropagation(BP)neural network is proposed to resolve the low stability and high-power consumption caused by inaccurate commutation point prediction in conventional commutation strategy during acceleration and deceleration.This article also builds a complete brushless DC motor drive system based on the GD32F103 micro control unit(MCU),with an Artix-7 XC7A35T field programmable gate array(FPGA)to meet the performance requirements of neural network calculation for real-time motor commutation control.Experimental results show that the proposed optimization strategy can effectively improve the system stability during system acceleration and deceleration,and reduce the current spikes generated during speed chan-ges.The system power consumption is reduced by about 11.7%on average.
文摘Presents the simulation and analysis of the steady state characteristic of a brushless DC motor studies the torque current characteristic of the motor as well and discusses the design of a current measure circuit for torque controlling.
基金supported in part by the Natural Science Foundation of China(61973080,61973081)by the Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration(201928069002)the Key R&D Plan of Jiangsu Province(BE2020082-4)。
文摘The speed regulation problem with only speed measurement is investigated in this paper for a permanent magnet direct current(DC)motor driven by a buck converter.By lumping all unknown matched/unmatched disturbances and uncertainties together,the traditional active disturbance rejection control(ADRC)approach provides an intuitive solution for the problem under consideration.However,for such a higher-order disturbed system,the increase of poles for the extended state observer(ESO)therein will lead to drastically growth of observer gains,which causes severe noise amplification.This paper aims to propose a new model-based disturbance rejection controller for the converter-driven DC motor system using output-feedback.Instead of estimating lumped disturbances directly,a new observer is constructed to estimate the desired steady state of control signal as well as errors between the real states and their desired steady-state responses.Thereafter,a controller with only speed measurement is proposed by utilizing the estimates.The performance of the proposed method is tested through experiments on dSPACE.It is further shown via numerical calculations and experimental results that the poles of the observer within the proposed control approach can be largely increased without significantly increasing magnitude of the observer gains.
文摘In industries DC motor drives are very essential due to their high performance applications such as its reliability, ease of control, low cost and simplicity. And speed control of these motors is very easy due to power electronic AC-DC converters. These power electronic converters are with prominent low power factor and higher Total Harmonic Distortion (THD). These converters operate only for short time resulting non-sinusoidal waveform. This problem of harmonic distortion can be mitigated by reshaping the non-sinusoidal waveform to pure sine wave. Different wave shaping techniques have been developed by using different filters among which one is tuned passive filter. This paper proposed power factor improvement and harmonic mitigation of AC-DC converters based on separately excited DC motor using tuned passive filter. In this context experimental model is designed and results are analyzed by power quality analyzer.
文摘The major function of this proposed research is to control the speed of the brushless DC motor with sensor less control for four-switch three phase inverter. This proposed system is simplified the topological structure of the conventional six-switch three phase inverter. In this proposed method, a new structure of four-switch three phase inverter [1] with reduced number of switches for system is introduced to reduce the mechanical commutation, switching losses that occur in the six-switch method. The proposed inverter fed brushless DC motor used in sensorless control schemes which is used for sensing positioning signals. To improve sensor less control performance, four-switch electronic commutation modes based proportional intergral controller scheme is implemented. In this four-switch three phase inverter reduction of switches, low cost control and saving of hall sensor were incorporated. The feasibility of the proposed sensor less control four-switch three phase inverter fed brushless DC motor drive is implemented, analysed using MATLAB/SIMULINK, effective simulation results have been validated out successfully.
文摘The brushless DC motor can be used in the marine electric propulsion system for its excellent control characteristics and large thrust. In order to estimate the operating performances of the brushless DC motor for the high-power shipping during the design stage, the steady-state analysis is as important as the dynamic analysis generally. A mathematical model of the brushless DC propulsion motor is established according to the state-space method for the dynamic and steady-state performance analysis. The state-space mathematical model is a set of linear differential equations, so the steady-state currents of the armature windings can be gained directly by the symmetrical boundary conditions and the eigenvalues of the system matrix. The steady-state simulation results are compared with the dynamic ones to validate the correctness of this eigenvector method.