Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during ...Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.展开更多
A mathematical model of the direct chill(DC)casting process for AZ31magnesium slab has been developed to predict the temperature evolution in the slab.The temperature fields at different casting speeds were compared a...A mathematical model of the direct chill(DC)casting process for AZ31magnesium slab has been developed to predict the temperature evolution in the slab.The temperature fields at different casting speeds were compared and the optimum casting speed of 300 mm×800 mm magnesium slab in the certain pouring temperature and cooling-water flow rate was obtained.The casting speed during the plant trial was consistent with the calculation.展开更多
Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and th...Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and the Reynolds stress model(RSM),are employed in the numerical simulations of direct current(DC)arc plasma torches in the range of arc current from 80 A to 240 A and air gas flow rate from 10 m^3 h^-1 to 50 m^3 h^-1.The calculated voltage,electric field intensity,and the heat loss in the arc chamber are compared with the experiments.The results indicate that the arc voltage,the electric field,and the heat loss in the arc chamber calculated by using the standard k-ω model,the RNG k-ωmodel taking into account the low Reynolds number effect,and the realizable k-ω model are much larger than those in the experiments.The RSM predicts relatively close results to the experiments,but fails in the trend of heat loss varying with the gas flow rate.The calculated results of the SST k-ω model are in the best agreement with the experiments,which may be attributed to the reasonable predictions of the turbulence as well as its distribution.展开更多
In recent years, a large number of high voltage direct current(HVDC) transmission projects have been connected to AC systems. This has started to have an impact on AC/DC hybrid power grids, particularly receiving term...In recent years, a large number of high voltage direct current(HVDC) transmission projects have been connected to AC systems. This has started to have an impact on AC/DC hybrid power grids, particularly receiving terminal power grids. An HVDC system is a large-scale power electronic integrated nonlinear system, and it includes a primary system and a control and protection system. Hence, the precision and degree of detail of HVDC systems directly affect the actual effect of simulation. In recent years, in the case of the normal operation and failure of AC power grids, the abnormal fluctuation and even locking of HVDC systems caused by the inappropriate strategies of the control and protection system component have strongly affected power grids. This has significantly affected the safety and stability of receiving power grids and normal operation. In this study, the actual engineering HVDC control logic provided by a manufacturer is analyzed and simulated based on the user defined component library of the ADPSS electromagnetic transient calculation program, and an HVDC control model based on an actual system is established. The accuracy of the DC control custom model based on ADPSS is verified through the simulation of an actual power grid.展开更多
Considering the droplet coalescence, the motion of a group of dispersed droplets in W/O emulsion in a DC electric field is simulated. The simulation demonstrates the evolutions of droplet number, size as well as its d...Considering the droplet coalescence, the motion of a group of dispersed droplets in W/O emulsion in a DC electric field is simulated. The simulation demonstrates the evolutions of droplet number, size as well as its distribution,local concentration distribution and droplet size-velocity relation with the applied time of electric field. The simulated average droplet size is roughly consistent with the experimental value. The simulated variation of droplet number with time under several applied voltages shows that increasing voltage is more effective for raising the rate of droplet coalescence than extending exerting time. However, with the further raise of applied voltage, the improvement in droplet coalescence rate becomes less significant. The evolution of simulated droplet size–velocity relationship with time shows that the inter-droplet electric repulsion force is very strong due to larger electric charge on the droplet under higher applied voltage, so that the magnitude and the direction of droplet velocity become more random, which looks helpful to droplet coalescence.展开更多
This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupli...This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupling model was set up. Based on the calculation result with complex image method, this paper derived the modification factor for induced earth potential from practical measurement, which increased the accuracy of calculation. The modification method is helpful for evaluation on the effect of means used for blocking the dc-bias current in transformer neutral and also useful for the forecast of the DC current distribution when the power grid is in different line connection mode. The DC distribution character in Guangdong power grid is shown and suggestion is proposed that the mitigation of dc-bias should start from those substations whose earth-potential is highest.展开更多
Alkali metal DC arc discharge has the characteristics of easy ionization,low power consumption,high plasma temperature and ionization degree,etc,which can be applied in aerospace vehicles in various ways.In this paper...Alkali metal DC arc discharge has the characteristics of easy ionization,low power consumption,high plasma temperature and ionization degree,etc,which can be applied in aerospace vehicles in various ways.In this paper,we calculate the physical property parameters of lithium vapor,one of the major alkali metals,and analyze the discharge characteristics of lithium plasma with the magnetohydrodynamic(MHD)model.The discharge effects between constant current and voltage sources are also compared.It is shown that the lithium plasma of DC arc discharge has relatively high temperature and current density.The peak temperature can reach tens of thousands of K,and the current density reaches 6 x 107 A m 2.Under the same rated power,the plasma parameters of the constant voltage source discharge are much higher than those of the constant current source discharge,which can be used as the preferred discharge mode for aerospace applications.展开更多
The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the...The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.展开更多
This paper describes the design and simulation by HFSS simulator of a probe-fed Planar Inverted-F Antenna (PIFA) for the use in GSM900 band [890 MHz - 960 MHz] and DCS1800 band [1710 MHz - 1880 MHz]. A methodology bas...This paper describes the design and simulation by HFSS simulator of a probe-fed Planar Inverted-F Antenna (PIFA) for the use in GSM900 band [890 MHz - 960 MHz] and DCS1800 band [1710 MHz - 1880 MHz]. A methodology based on parametric simulations (parameters are ground plan lenght, height of radiating plate, feeding point position, shorting plate width and position) was used to design optimized antenna. The simulation allowed the characterization of the designed antenna and the computing of different antenna parameters like S11 parameter, resonant frequency, VSWR, bandwidth, impedance in feeding point, gain, diagram pattern and Fields distribution. The results were very interesting and respect the GSM requirements.展开更多
DC regulated power has play a decisive role status in the modem enterprise production and family life. With the development of science and technology, all kinds of computer simulation technology is increasingly rising...DC regulated power has play a decisive role status in the modem enterprise production and family life. With the development of science and technology, all kinds of computer simulation technology is increasingly rising, the paper simulate and compare common DC regulated power with adjustable DC regulated power by Altium Designer software, intuitively demonstrates the stabilizing effect of the circuit, and introduces the characteristics of adjustable DC regulated power. Using AD13 software simulate and design DC stabilized power supply circuit, calculated the main parameters of the circuit, simulated and analyzed the circuit working simulation process and the working state of the circuit, it can visually verify the results of the theoretical analysis, and get relevant conclusions.展开更多
Based on the principle of electrical penetration, the reflection characteristics of collapse columns at different locations of a working face is numerically simulated by using a 3D finite element method. The data coll...Based on the principle of electrical penetration, the reflection characteristics of collapse columns at different locations of a working face is numerically simulated by using a 3D finite element method. The data collected by the electrical penetration is processed and interpreted using “tunnel penetration” which is similar to radio wave penetration. Reflection characteristics of collapse columns at different locations below floors of coal seams are analyzed, providing a new paradigm and a theoretical foundation for processing and interpreting electrical penetration data. The tomography analysis is made based on data simulation and calculation results and alltransmitting-receiving points are analyzed for their corresponding maximum attenuation values and maximum absorption coefficients. On the basis of this, a new method for precisely interpreting the spatial positions of geological anomalous bodies is suggested. The simulation shows that 1) the detection result of both roof and floors of the working face by electrical penetration is a volumetric effect and 2) there exists a corresponding relation between the detection depth and the working face width, with the op- timal detection depth within 40% of the workin face width.展开更多
基金financially supported by the National Natural Science Foundation of China(No.51674078)。
文摘Casting speed,casting temperature and secondary cooling water flow rate are the main process parameters affecting the DC casting process.These parameters significantly influence the flow and temperature fields during casting,which are crucial for the quality of the ingot and can determine the success or failure of the casting operation.Numerical simulation,with the advantages of low cost,rapid execution,and visualized results,is an important method to study and optimize the DC casting process.In the present work,a simulation model of DC casting 2024 aluminum alloy was established,and the reliability of the model was verified.Then,the influence of casting parameters on flow field and temperature field was studied in detail by numerical simulation method.Results show that with the increase of casting speed,the melt flow becomes faster,the depths of slurry zone and mushy zone increase,and the variation of slurry zone depth is greater than that of mushy zone.With an increase in casting temperature,the melt flow rate increases,the depth of the slurry zone becomes shallower,and the depth of the mushy zone experiences only minor changes.The simulation results further indicate that the increase of the flow rate of the secondary cooling water slightly reduces the depths of both slurry and mushy zone.
基金This work is supported by National Key Technology R&D Program of China(2011BAE22B03)National Key Technology R&D Program of China(2012BAF09B01)+1 种基金National Basic Research Program of China(2013CB632203)National Natural Science Foundation of China(51074207).
文摘A mathematical model of the direct chill(DC)casting process for AZ31magnesium slab has been developed to predict the temperature evolution in the slab.The temperature fields at different casting speeds were compared and the optimum casting speed of 300 mm×800 mm magnesium slab in the certain pouring temperature and cooling-water flow rate was obtained.The casting speed during the plant trial was consistent with the calculation.
基金National Natural Science Foundation of China(Nos.11675177,11875256)the Anhui Province Scientific and Technological Project(No.1604a0902145).
文摘Five turbulence models of Reynolds average Navier-Stokes(RANS),including the standard k-ω model,the RNG k-e model taking into account the low Reynolds number effect,the realizable k-ω model,the SST k-ω model,and the Reynolds stress model(RSM),are employed in the numerical simulations of direct current(DC)arc plasma torches in the range of arc current from 80 A to 240 A and air gas flow rate from 10 m^3 h^-1 to 50 m^3 h^-1.The calculated voltage,electric field intensity,and the heat loss in the arc chamber are compared with the experiments.The results indicate that the arc voltage,the electric field,and the heat loss in the arc chamber calculated by using the standard k-ω model,the RNG k-ωmodel taking into account the low Reynolds number effect,and the realizable k-ω model are much larger than those in the experiments.The RSM predicts relatively close results to the experiments,but fails in the trend of heat loss varying with the gas flow rate.The calculated results of the SST k-ω model are in the best agreement with the experiments,which may be attributed to the reasonable predictions of the turbulence as well as its distribution.
基金supported by National Key Research and Development Program of China-High performance analysis and situational awareness technology for interconnected power grids
文摘In recent years, a large number of high voltage direct current(HVDC) transmission projects have been connected to AC systems. This has started to have an impact on AC/DC hybrid power grids, particularly receiving terminal power grids. An HVDC system is a large-scale power electronic integrated nonlinear system, and it includes a primary system and a control and protection system. Hence, the precision and degree of detail of HVDC systems directly affect the actual effect of simulation. In recent years, in the case of the normal operation and failure of AC power grids, the abnormal fluctuation and even locking of HVDC systems caused by the inappropriate strategies of the control and protection system component have strongly affected power grids. This has significantly affected the safety and stability of receiving power grids and normal operation. In this study, the actual engineering HVDC control logic provided by a manufacturer is analyzed and simulated based on the user defined component library of the ADPSS electromagnetic transient calculation program, and an HVDC control model based on an actual system is established. The accuracy of the DC control custom model based on ADPSS is verified through the simulation of an actual power grid.
基金Supported by the Special Research Project of Fujian Province(JK2012027)the Natural Science Foundation of Fujian Province(2014J01201)
文摘Considering the droplet coalescence, the motion of a group of dispersed droplets in W/O emulsion in a DC electric field is simulated. The simulation demonstrates the evolutions of droplet number, size as well as its distribution,local concentration distribution and droplet size-velocity relation with the applied time of electric field. The simulated average droplet size is roughly consistent with the experimental value. The simulated variation of droplet number with time under several applied voltages shows that increasing voltage is more effective for raising the rate of droplet coalescence than extending exerting time. However, with the further raise of applied voltage, the improvement in droplet coalescence rate becomes less significant. The evolution of simulated droplet size–velocity relationship with time shows that the inter-droplet electric repulsion force is very strong due to larger electric charge on the droplet under higher applied voltage, so that the magnitude and the direction of droplet velocity become more random, which looks helpful to droplet coalescence.
文摘This paper focus on the Modeling and Calculation of DC current distribution in AC power grid induced under HVDC Ground-Return-Mode. Applying complex image method and boundary element method, a new field-circuit coupling model was set up. Based on the calculation result with complex image method, this paper derived the modification factor for induced earth potential from practical measurement, which increased the accuracy of calculation. The modification method is helpful for evaluation on the effect of means used for blocking the dc-bias current in transformer neutral and also useful for the forecast of the DC current distribution when the power grid is in different line connection mode. The DC distribution character in Guangdong power grid is shown and suggestion is proposed that the mitigation of dc-bias should start from those substations whose earth-potential is highest.
文摘Alkali metal DC arc discharge has the characteristics of easy ionization,low power consumption,high plasma temperature and ionization degree,etc,which can be applied in aerospace vehicles in various ways.In this paper,we calculate the physical property parameters of lithium vapor,one of the major alkali metals,and analyze the discharge characteristics of lithium plasma with the magnetohydrodynamic(MHD)model.The discharge effects between constant current and voltage sources are also compared.It is shown that the lithium plasma of DC arc discharge has relatively high temperature and current density.The peak temperature can reach tens of thousands of K,and the current density reaches 6 x 107 A m 2.Under the same rated power,the plasma parameters of the constant voltage source discharge are much higher than those of the constant current source discharge,which can be used as the preferred discharge mode for aerospace applications.
文摘The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.
文摘This paper describes the design and simulation by HFSS simulator of a probe-fed Planar Inverted-F Antenna (PIFA) for the use in GSM900 band [890 MHz - 960 MHz] and DCS1800 band [1710 MHz - 1880 MHz]. A methodology based on parametric simulations (parameters are ground plan lenght, height of radiating plate, feeding point position, shorting plate width and position) was used to design optimized antenna. The simulation allowed the characterization of the designed antenna and the computing of different antenna parameters like S11 parameter, resonant frequency, VSWR, bandwidth, impedance in feeding point, gain, diagram pattern and Fields distribution. The results were very interesting and respect the GSM requirements.
文摘DC regulated power has play a decisive role status in the modem enterprise production and family life. With the development of science and technology, all kinds of computer simulation technology is increasingly rising, the paper simulate and compare common DC regulated power with adjustable DC regulated power by Altium Designer software, intuitively demonstrates the stabilizing effect of the circuit, and introduces the characteristics of adjustable DC regulated power. Using AD13 software simulate and design DC stabilized power supply circuit, calculated the main parameters of the circuit, simulated and analyzed the circuit working simulation process and the working state of the circuit, it can visually verify the results of the theoretical analysis, and get relevant conclusions.
基金Projects 20050290501supported by the Specialized Research Fund for the Doctoral Program of Higher Education40674074 by the National Natural Science Foundation of China
文摘Based on the principle of electrical penetration, the reflection characteristics of collapse columns at different locations of a working face is numerically simulated by using a 3D finite element method. The data collected by the electrical penetration is processed and interpreted using “tunnel penetration” which is similar to radio wave penetration. Reflection characteristics of collapse columns at different locations below floors of coal seams are analyzed, providing a new paradigm and a theoretical foundation for processing and interpreting electrical penetration data. The tomography analysis is made based on data simulation and calculation results and alltransmitting-receiving points are analyzed for their corresponding maximum attenuation values and maximum absorption coefficients. On the basis of this, a new method for precisely interpreting the spatial positions of geological anomalous bodies is suggested. The simulation shows that 1) the detection result of both roof and floors of the working face by electrical penetration is a volumetric effect and 2) there exists a corresponding relation between the detection depth and the working face width, with the op- timal detection depth within 40% of the workin face width.