Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter...Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter.The component package size for this capacitor is large due to its high voltage rating and capacitance value.In addition,the high charging current creates more pro-blems during the product compliance testing phase.The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors(MLCC),which limits its use for the highly reliable applications.This paper presents a fea-sibility study to overcome these two problems by adding a few sensing mechan-isms to the typical AC–DC converter topology.In majority of the AC–DC converter,Al-Elko capacitor takes approximately 3%to 5%of the converter size.The proposed method reduces this to approximately 50%size and so it effectively approximates 2%to 3%size reduction in converter size.The proposed method basically works based on the load current prediction method and hence it is highly suitable for the constant load application.Moreover,the converter response time increases in this method,which limit its application in high-speed systems.The high temperature application of Al-Elko capacitor is limited because of its poor performance,which is significantly rectified by replacing the Al-Elko with MLCC as it delivers good performance in high temperature.展开更多
The conventional inverters have the shortcomings of straightway conduction in transistors and the difficulty of realizing soft swit ̄ching. A novel inverter based on the DC/DC converter topology is presented. The inve...The conventional inverters have the shortcomings of straightway conduction in transistors and the difficulty of realizing soft swit ̄ching. A novel inverter based on the DC/DC converter topology is presented. The inverter is comprised of a combined Buck/Boost DC/DC converter and a bridge circuit. The front stage converter is controlled to output variable DC voltage and the bridge circuit is used to convert the DC voltage to AC output. The energy feedback technology and one circle control scheme are used t...展开更多
To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC....To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC. A current feedback loop for output voltage adjustment is proposed for low signal distortion. Moreover,a special startup control logic is designed to improve startup timing and to speed up the initial current sharing. It was completed in 1.5μm bipolar-CMOS-DMOS (BCD) technology with an area of 3.6mm^2 . Using it,a paralleled power system of two DC/DC converters capable of outputting 12V/3A was built. Experimental results show that the current sharing error at full load is kept within 1%.展开更多
The precondition of realizing feedback controlling DC DC converter to avoid chaotic state is to judge the behavior of the converter and take corresponding measures. In this paper, the output signals under different ci...The precondition of realizing feedback controlling DC DC converter to avoid chaotic state is to judge the behavior of the converter and take corresponding measures. In this paper, the output signals under different circuit parameters of the PWM buck converter have been analyzed. The method of using Fourier descriptor to extract output signals characteristics is put forward and proved to be a gist of identifying and classifying the behavior of DC DC converter. This method can establish a good foundation fo...展开更多
This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), pe...This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.展开更多
A DC DC buck converter c on trolled by naturally sampled, constant frequency PWM is considered. The existe nce of chaotic solutions and the output performance of the system under differen t circuit parameters are s...A DC DC buck converter c on trolled by naturally sampled, constant frequency PWM is considered. The existe nce of chaotic solutions and the output performance of the system under differen t circuit parameters are studied. The transforming pattern of system behavior fr om steady state to chaotic is discovered by the cascades of period doubling bi furcation and the cascades of periodic orbit in V I phase space. Accordingl y, it is validated that change of values of the circuit parameters may lead DC DC converter to chaotic motion. Performances of the output ripples fro m steady state to chaotic are analyzed in time and frequency domains respective ly. Some important conclusions are helpful for opt imization design of DC DC converter.展开更多
DC/DC switching converters are widely used in numerous appliances in modern existence. In this paper, the dynamic and transient response of phase shift series resonant DC/DC converter are improved using hybrid particl...DC/DC switching converters are widely used in numerous appliances in modern existence. In this paper, the dynamic and transient response of phase shift series resonant DC/DC converter are improved using hybrid particle swarm optimization tuned fuzzy sliding mode controller under starting and load step change conditions. The aim of the control is to regulate the output voltage beneath the load change. The model of the hybrid particle swarm optimization tuned fuzzy sliding mode controller is implemented using Sim Power Systems toolbox of MATLAB SIMULINK. Performance of the proposed dynamic novel control under step load change condition is investigated.展开更多
A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC convert...A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC converters are designed to be series-connected and work in a sequential mode. The structure of the regulator of the converter system is described. A simulation model was built up for the PSCAD/EMTDC code, and the design was validated accordingly. Harmonic analysis and reactive power calculation of the converters units are presented. The results reveal the advantage of sequential control in reducing reactive power and harmonics.展开更多
Bridgeless single-stage converters are used for efficient(alternative current)AC-(direct current)DC conversion.These converters control generators,likeelectromagnetic meso-and micro-scale generators with low voltage.P...Bridgeless single-stage converters are used for efficient(alternative current)AC-(direct current)DC conversion.These converters control generators,likeelectromagnetic meso-and micro-scale generators with low voltage.Power factorcorrection helps increase the factor of the power supply.The main advantage ofthe power factor is it shapes the input current for increasing the real power of theAC supply.In this paper,a two-switch bridgeless rectifier topology is designedwith a power factor correction capability.For the proposed converter topologyto have good power quality parameters,the closed loop scheme,which uses thegrey wolf optimization(GWO)algorithm,is implemented.The successes ofGWO encourage this research to implement GWO in the topology.The performanceof the proposed topology is analyzed under different load conditions.Simulation is carried out using the MATLAB/Simulink environment,and theresults are compared with those of conventional(proportional integral derivative)PID and(particle swarm optimization)PSO controllers.To validate the simulation results,a 350-W hardware prototype is implemented,and the voltage ripple,efficiency,and power factor under different load conditions are analyzed and tabulated.The comparative study clearly indicates that the proposed convertertopology with a closed loop control scheme using the GWO algorithm improves the power factor to 0.9732 and reduces the voltage ripple to 0.12%with a conversion efficiency of 98.25%.展开更多
A simple single-stage AC/DC converter circuit with active clamp is presented. The operation theory and state are analyzed. The experimental results show that the voltage across main switch can be clamped to a certain ...A simple single-stage AC/DC converter circuit with active clamp is presented. The operation theory and state are analyzed. The experimental results show that the voltage across main switch can be clamped to a certain value,and zero voltage switching (ZVS) can be achieved. The voltage stress and switching loss are both decreased. In range of the whole load,power factors can be always more than 97%,and the highest efficiency can reach 88%.展开更多
This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield...This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.展开更多
With the increasing use of low voltage portable devices and wireless systems, energy harvesting has become an attractive approach to overcome the problems associated with battery life and power source. Among the diffe...With the increasing use of low voltage portable devices and wireless systems, energy harvesting has become an attractive approach to overcome the problems associated with battery life and power source. Among the different types of microenergy scavengers, the TEG (thermoelectric generators) are one of the most commonly used one. Unfortunately, due to the very small amount of voltage delivered by the TEG, an efficient DC/DC (direct current/direct current) conversion and power management techniques are needed. In this paper, a CMOS (complementary metal oxide semiconductor) fully-integrated DC/DC convener for energy harvesting applications is presented. The startup-voltage of the converter is about 140 mV, the output voltage exceeds 1.5 V, with a 20% power efficiency at least. The architecture for boosting such extremely low voltages is based on an ultra-low-voltage oscillator cross connected to two phase charge pump. The overall circuit does not require any external components and can be fully integrated in a standard CMOS low voltage technology. A test-chip has been designed in UMC (united microelectronics corporation) 180 nm CMOS process.展开更多
Due to the slow dynamic power-regulation characteristics of the electrolyser(EL),a novel integrated three-port DC/DC converter topology based on a phase-shifted full-bridge converter and dual active-bridge converter i...Due to the slow dynamic power-regulation characteristics of the electrolyser(EL),a novel integrated three-port DC/DC converter topology based on a phase-shifted full-bridge converter and dual active-bridge converter is proposed in this paper.Especially,the proposed converter can achieve a fast auxiliary response to the EL.This topology has the features of single-stage conversion,high system integration and compatibility with multiple operation modes.The operational principles and a hybrid modulation scheme of the proposed converter are analysed in detail.In addition,the power-transmission characteristics of each port and the soft-switching range are researched.On these bases,six operation modes suitable for a hydrogen energy-storage system are designed.The simulation and a 2-kW scaled-down experimental prototype are established to verify the feasibility and effectiveness of the proposed topology in different operation modes.展开更多
Direct current(DC) microgrid consists of many parallel power converters that share load currents through the inductance of DC/DC converters. Usually, the inductance parameters are dependent on the physical implementat...Direct current(DC) microgrid consists of many parallel power converters that share load currents through the inductance of DC/DC converters. Usually, the inductance parameters are dependent on the physical implementation of the system, and their values may not match their nameplates. Such disparities could lead to unequal response characteristics of the system, which can potentially reduce the performances of the DC microgrid operation. This paper proposes a robust control strategy for inductive parametric uncertainties of DC/DC converters using an optimal control method with integral action. To achieve such a goal, the system model parameters with nominal values are transformed into parametric unmatched uncertainties to form a robust control problem, which is then transformed into a linear quadratic regulator problem. The inductance uncertainties are stabilized with the uncertainty dynamic algebraic Riccati equation(UDARE) using state feedback gain under linear quadratic regulator. The closed-loop control with integral action is adopted to achieve a steady-state error of zero on the DC-link voltage at any uncertainty of the inductive parameter, which subsequently ensures the equal load current sharing. Off-line simulations and real-time validations based on OpalRT have been conducted to demonstrate the effectiveness and robustness of the proposed robust control strategy.展开更多
Non-isolated DC/DC converter based on modular multilevel converter(MMC)technology is expected to play an important role in future DC transmission grids.This paper presents a phasor analytical model for this new family...Non-isolated DC/DC converter based on modular multilevel converter(MMC)technology is expected to play an important role in future DC transmission grids.This paper presents a phasor analytical model for this new family of converters which is suitable for a range of studies like DC grid power flow or DC/DC parametric design.The 30th-order phasor model is derived in 3 coordinate frames:zero sequence(DC),fundamental frequency(dq),and double frequency(d2q2).The second-harmonic current suppression control is included as an option.Additionally,an estimation of the required control signals is presented,and a closed-loop model is developed which facilitates direct calculation of all variables and fast parametric studies.The accuracy of the proposed models is verified against a detailed PSCAD model for a wide range of parameters.The studies illustrate the importance of the second-harmonic components on the model accuracy.Finally,the impact of the converter parameters on the performance is studied,and a basic eigenvalue stability analysis is given.展开更多
In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To ...In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.展开更多
Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an ...Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an analytical method for the capacitor current on the H-bridge topology side,the root-mean-square value of the capacitor current was calculated,which helps in selecting the DC-link capacitors.The proposed method solves this problem quickly and with high accuracy.The current reconstruction of the DC-link capacitor is proposed to avoid structural damage in the capacitor’s current measurement,and the capacitor’s hotspot temperature and temperature rise are calculated using the FFT transform.The test results showed that the error between the calculated and measured temperature increases was within 1.5℃.Finally,the lifetime of DC-link capacitors was predicted based on Monte Carlo analysis.The proposed method can evaluate the reliability of DC-link capacitors in a non-isolated switching pulsed power supply for accelerators and is also applicable to film capacitors.展开更多
This paper presents an isolated DC/AC/DC converter using a middle frequency transformer coupling two modular multilevel converters(MMC),suitable for interconnecting DC transmission lines of different voltage levels in...This paper presents an isolated DC/AC/DC converter using a middle frequency transformer coupling two modular multilevel converters(MMC),suitable for interconnecting DC transmission lines of different voltage levels in high voltage direct current(HVDC)system.The basic operational principle of the isolated module multilevel DC/DC converter(IMMDCC)is analyzed.The dynamic model of IMMDCC is studied in detail and the transient relationship between DC side and AC side of IMMDCC is revealed,which is physically straightforward for understanding the power transfer in IMMDCC.The control strategy in D-Q coordinate system is put forward,and the fault characteristic and corresponding protection method is analyzed.Finally,computer simulation using Matlab/Simulink is performed to verify the dynamic model and the proposed control strategy.The simulation results show good performances and the quick response ability of the proposed control strategy.展开更多
A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The t...A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.展开更多
This paper tested and analyzed heavy ion and proton induced single event effects(SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients(SET) testing ha...This paper tested and analyzed heavy ion and proton induced single event effects(SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients(SET) testing has been carried out by using the Beijing HI-13 tandem accelerator at China Institute of Atomic Energy. Proton test has been carried out by using the Canadian TRIUMF proton accelerator. Both SET cross section versus linear energy transfer(LET) and proton energy has been measured. The main study conclusions are:(1) the DC/DC is both sensitive to heavy ion and proton radiations although at a pretty large feature size(600 nm), and threshold LET is about 0.06 Me V mg/cm^2;(2) heavy ion SET saturation cross section is about 5 magnitudes order larger than proton SET saturation cross section, which is consistent with the theory calculation result deduced by the RPP model and the proton nuclear reaction model;(3) on-orbit soft error rate(SER) prediction showed, on GEO orbit,proton induced SERs calculated by the heavy ion derived model are 4–5 times larger than those calculated by proton test data.展开更多
文摘Alternating Current–Direct Current(AC–DC)converters require a high value bulk capacitor or afilter capacitor between the DC–DC conversion stages,which in turn causes many problems in the design of a AC–DC converter.The component package size for this capacitor is large due to its high voltage rating and capacitance value.In addition,the high charging current creates more pro-blems during the product compliance testing phase.The shelf life of these specific high value capacitors is less than that of Multilayer Ceramic Capacitors(MLCC),which limits its use for the highly reliable applications.This paper presents a fea-sibility study to overcome these two problems by adding a few sensing mechan-isms to the typical AC–DC converter topology.In majority of the AC–DC converter,Al-Elko capacitor takes approximately 3%to 5%of the converter size.The proposed method reduces this to approximately 50%size and so it effectively approximates 2%to 3%size reduction in converter size.The proposed method basically works based on the load current prediction method and hence it is highly suitable for the constant load application.Moreover,the converter response time increases in this method,which limit its application in high-speed systems.The high temperature application of Al-Elko capacitor is limited because of its poor performance,which is significantly rectified by replacing the Al-Elko with MLCC as it delivers good performance in high temperature.
文摘The conventional inverters have the shortcomings of straightway conduction in transistors and the difficulty of realizing soft swit ̄ching. A novel inverter based on the DC/DC converter topology is presented. The inverter is comprised of a combined Buck/Boost DC/DC converter and a bridge circuit. The front stage converter is controlled to output variable DC voltage and the bridge circuit is used to convert the DC voltage to AC output. The energy feedback technology and one circle control scheme are used t...
文摘To keep even current distribution among DC/DC converters in a paralleled power system,an automatic master-slave control (AMSC) current sharing scheme is presented,which was implemented by a current share control IC. A current feedback loop for output voltage adjustment is proposed for low signal distortion. Moreover,a special startup control logic is designed to improve startup timing and to speed up the initial current sharing. It was completed in 1.5μm bipolar-CMOS-DMOS (BCD) technology with an area of 3.6mm^2 . Using it,a paralleled power system of two DC/DC converters capable of outputting 12V/3A was built. Experimental results show that the current sharing error at full load is kept within 1%.
文摘The precondition of realizing feedback controlling DC DC converter to avoid chaotic state is to judge the behavior of the converter and take corresponding measures. In this paper, the output signals under different circuit parameters of the PWM buck converter have been analyzed. The method of using Fourier descriptor to extract output signals characteristics is put forward and proved to be a gist of identifying and classifying the behavior of DC DC converter. This method can establish a good foundation fo...
文摘This paper proposes a design and implementation of the bi-directional DC-DC converter for Wind Energy Conversion System. The proposed project consists of boost DC/DC converter, bi-directional DC/DC converter (BDC), permanent magnet DC generator and batteries. A DC-DC boost converter is interface with proposed wind system to step up the initial generator voltage and maintain constant output voltage. The fluctuation nature of wind makes them unsuitable for standalone operation. To overcome the drawbacks an energy storage device is used in the proposed system to compensate the fluctuations and to maintain a smooth and continuous power flow in all operating modes to load. Bi-directional DC-DC converter (BDC) is capable of transforming energy between two DC buses. It can operate as a boost converter which supplies energy to the load when the wind generator output power is greater than the required load power. It also operates in buck mode which charges from DC bus when output power is less than the required load power. The proposed converter reduces the component losses and increases the performance of the overall system. The complete system is implemented in MATLAB/SIMULINK and verified with hardware.
文摘A DC DC buck converter c on trolled by naturally sampled, constant frequency PWM is considered. The existe nce of chaotic solutions and the output performance of the system under differen t circuit parameters are studied. The transforming pattern of system behavior fr om steady state to chaotic is discovered by the cascades of period doubling bi furcation and the cascades of periodic orbit in V I phase space. Accordingl y, it is validated that change of values of the circuit parameters may lead DC DC converter to chaotic motion. Performances of the output ripples fro m steady state to chaotic are analyzed in time and frequency domains respective ly. Some important conclusions are helpful for opt imization design of DC DC converter.
文摘DC/DC switching converters are widely used in numerous appliances in modern existence. In this paper, the dynamic and transient response of phase shift series resonant DC/DC converter are improved using hybrid particle swarm optimization tuned fuzzy sliding mode controller under starting and load step change conditions. The aim of the control is to regulate the output voltage beneath the load change. The model of the hybrid particle swarm optimization tuned fuzzy sliding mode controller is implemented using Sim Power Systems toolbox of MATLAB SIMULINK. Performance of the proposed dynamic novel control under step load change condition is investigated.
文摘A design of the main AC/DC converter system for ITER is described and the configuration of the main AC/DC converters is presented. To reduce the reactive power absorbed from the converter units, the main AC/DC converters are designed to be series-connected and work in a sequential mode. The structure of the regulator of the converter system is described. A simulation model was built up for the PSCAD/EMTDC code, and the design was validated accordingly. Harmonic analysis and reactive power calculation of the converters units are presented. The results reveal the advantage of sequential control in reducing reactive power and harmonics.
文摘Bridgeless single-stage converters are used for efficient(alternative current)AC-(direct current)DC conversion.These converters control generators,likeelectromagnetic meso-and micro-scale generators with low voltage.Power factorcorrection helps increase the factor of the power supply.The main advantage ofthe power factor is it shapes the input current for increasing the real power of theAC supply.In this paper,a two-switch bridgeless rectifier topology is designedwith a power factor correction capability.For the proposed converter topologyto have good power quality parameters,the closed loop scheme,which uses thegrey wolf optimization(GWO)algorithm,is implemented.The successes ofGWO encourage this research to implement GWO in the topology.The performanceof the proposed topology is analyzed under different load conditions.Simulation is carried out using the MATLAB/Simulink environment,and theresults are compared with those of conventional(proportional integral derivative)PID and(particle swarm optimization)PSO controllers.To validate the simulation results,a 350-W hardware prototype is implemented,and the voltage ripple,efficiency,and power factor under different load conditions are analyzed and tabulated.The comparative study clearly indicates that the proposed convertertopology with a closed loop control scheme using the GWO algorithm improves the power factor to 0.9732 and reduces the voltage ripple to 0.12%with a conversion efficiency of 98.25%.
文摘A simple single-stage AC/DC converter circuit with active clamp is presented. The operation theory and state are analyzed. The experimental results show that the voltage across main switch can be clamped to a certain value,and zero voltage switching (ZVS) can be achieved. The voltage stress and switching loss are both decreased. In range of the whole load,power factors can be always more than 97%,and the highest efficiency can reach 88%.
文摘This paper presents and investigates planar and coaxial high frequency power transformers used for DC/DC converters in a three phase photo voltaic (PV) power systems. The winding structure including a Faraday shield between the primary and secondary windings is designed to minimize eddy current losses, skin and proximity effects, and to reduce the leakage inductance, and the inter winding coupling capacitance. Finite Element Method is employed to analyze the magnetic flux and eddy current distributions. The two different kinds of prototype high frequency transformers are designed and tested. The simulation and experiment results are demonstrated and compared with non-shielded transformers. The shielded transformers have achieved the expected results with a relatively small coupling capacitance, compared with the conventional high frequency transformer. This shield decreases the inter-winding coupling capacitance Cps. The topology of this shield has to be such that it acts as a Faraday screen while avoiding eddy current generation.
文摘With the increasing use of low voltage portable devices and wireless systems, energy harvesting has become an attractive approach to overcome the problems associated with battery life and power source. Among the different types of microenergy scavengers, the TEG (thermoelectric generators) are one of the most commonly used one. Unfortunately, due to the very small amount of voltage delivered by the TEG, an efficient DC/DC (direct current/direct current) conversion and power management techniques are needed. In this paper, a CMOS (complementary metal oxide semiconductor) fully-integrated DC/DC convener for energy harvesting applications is presented. The startup-voltage of the converter is about 140 mV, the output voltage exceeds 1.5 V, with a 20% power efficiency at least. The architecture for boosting such extremely low voltages is based on an ultra-low-voltage oscillator cross connected to two phase charge pump. The overall circuit does not require any external components and can be fully integrated in a standard CMOS low voltage technology. A test-chip has been designed in UMC (united microelectronics corporation) 180 nm CMOS process.
基金supported by the National Key R&D Program of China (no.2018YFB1503100)the National Natural Science Foundation of China (no.51907021).
文摘Due to the slow dynamic power-regulation characteristics of the electrolyser(EL),a novel integrated three-port DC/DC converter topology based on a phase-shifted full-bridge converter and dual active-bridge converter is proposed in this paper.Especially,the proposed converter can achieve a fast auxiliary response to the EL.This topology has the features of single-stage conversion,high system integration and compatibility with multiple operation modes.The operational principles and a hybrid modulation scheme of the proposed converter are analysed in detail.In addition,the power-transmission characteristics of each port and the soft-switching range are researched.On these bases,six operation modes suitable for a hydrogen energy-storage system are designed.The simulation and a 2-kW scaled-down experimental prototype are established to verify the feasibility and effectiveness of the proposed topology in different operation modes.
基金primarily supported by the National Natural Science Foundation of China (No. 51977039)。
文摘Direct current(DC) microgrid consists of many parallel power converters that share load currents through the inductance of DC/DC converters. Usually, the inductance parameters are dependent on the physical implementation of the system, and their values may not match their nameplates. Such disparities could lead to unequal response characteristics of the system, which can potentially reduce the performances of the DC microgrid operation. This paper proposes a robust control strategy for inductive parametric uncertainties of DC/DC converters using an optimal control method with integral action. To achieve such a goal, the system model parameters with nominal values are transformed into parametric unmatched uncertainties to form a robust control problem, which is then transformed into a linear quadratic regulator problem. The inductance uncertainties are stabilized with the uncertainty dynamic algebraic Riccati equation(UDARE) using state feedback gain under linear quadratic regulator. The closed-loop control with integral action is adopted to achieve a steady-state error of zero on the DC-link voltage at any uncertainty of the inductive parameter, which subsequently ensures the equal load current sharing. Off-line simulations and real-time validations based on OpalRT have been conducted to demonstrate the effectiveness and robustness of the proposed robust control strategy.
文摘Non-isolated DC/DC converter based on modular multilevel converter(MMC)technology is expected to play an important role in future DC transmission grids.This paper presents a phasor analytical model for this new family of converters which is suitable for a range of studies like DC grid power flow or DC/DC parametric design.The 30th-order phasor model is derived in 3 coordinate frames:zero sequence(DC),fundamental frequency(dq),and double frequency(d2q2).The second-harmonic current suppression control is included as an option.Additionally,an estimation of the required control signals is presented,and a closed-loop model is developed which facilitates direct calculation of all variables and fast parametric studies.The accuracy of the proposed models is verified against a detailed PSCAD model for a wide range of parameters.The studies illustrate the importance of the second-harmonic components on the model accuracy.Finally,the impact of the converter parameters on the performance is studied,and a basic eigenvalue stability analysis is given.
基金funded by the National Natural Science Foundation of China(52067013),and the Provincial Natural Science Foundation of Gansu(20JR5RA395).
文摘In the DC microgrid,the lack of inertia and damping in power electronic converters results in poor stability of DC bus voltage and low inertia of the DC microgrid during fluctuations in load and photovoltaic power.To address this issue,the application of a virtual synchronous generator(VSG)in grid-connected inverters control is referenced and proposes a control strategy called the analogous virtual synchronous generator(AVSG)control strategy for the interface DC/DC converter of the battery in the microgrid.Besides,a flexible parameter adaptive control method is introduced to further enhance the inertial behavior of the AVSG control.Firstly,a theoretical analysis is conducted on the various components of the DC microgrid,the structure of analogous virtual synchronous generator,and the control structure’s main parameters related to the DC microgrid’s inertial behavior.Secondly,the voltage change rate tracking coefficient is introduced to adjust the change of the virtual capacitance and damping coefficient flexibility,which further strengthens the inertia trend of the DC microgrid.Additionally,a small-signal modeling approach is used to analyze the approximate range of the AVSG’s main parameters ensuring system stability.Finally,conduct a simulation analysis by building the model of the DC microgrid system with photovoltaic(PV)and battery energy storage(BES)in MATLAB/Simulink.Simulation results from different scenarios have verified that the AVSG control introduces fixed inertia and damping into the droop control of the battery,resulting in a certain level of inertia enhancement.Furthermore,the additional adaptive control strategy built upon the AVSG control provides better and flexible inertial support for the DC microgrid,further enhances the stability of the DC bus voltage,and has a more positive impact on the battery performance.
基金supported by the National Key Research and Development Program of China(No.2019YFA0405402).
文摘Capacitors are widely used in pulsed magnet power supplies to reduce ripple voltage,store energy,and decrease power variation.In this study,DC-link capacitors in pulsed power supplies were investigated.By deriving an analytical method for the capacitor current on the H-bridge topology side,the root-mean-square value of the capacitor current was calculated,which helps in selecting the DC-link capacitors.The proposed method solves this problem quickly and with high accuracy.The current reconstruction of the DC-link capacitor is proposed to avoid structural damage in the capacitor’s current measurement,and the capacitor’s hotspot temperature and temperature rise are calculated using the FFT transform.The test results showed that the error between the calculated and measured temperature increases was within 1.5℃.Finally,the lifetime of DC-link capacitors was predicted based on Monte Carlo analysis.The proposed method can evaluate the reliability of DC-link capacitors in a non-isolated switching pulsed power supply for accelerators and is also applicable to film capacitors.
文摘This paper presents an isolated DC/AC/DC converter using a middle frequency transformer coupling two modular multilevel converters(MMC),suitable for interconnecting DC transmission lines of different voltage levels in high voltage direct current(HVDC)system.The basic operational principle of the isolated module multilevel DC/DC converter(IMMDCC)is analyzed.The dynamic model of IMMDCC is studied in detail and the transient relationship between DC side and AC side of IMMDCC is revealed,which is physically straightforward for understanding the power transfer in IMMDCC.The control strategy in D-Q coordinate system is put forward,and the fault characteristic and corresponding protection method is analyzed.Finally,computer simulation using Matlab/Simulink is performed to verify the dynamic model and the proposed control strategy.The simulation results show good performances and the quick response ability of the proposed control strategy.
文摘A new family of converters,high-performance AC/DC power factor correction(PFC) switching converters with one-cycle control technology and active floating-charge technology,was derived and experimentally verified.The topology of a single-phase CCM and DCM Boost-PFC switching converter was also analyzed.Its operating prniciples and control methods were expounded.Based on these,a new type of AC/DC switching converter circuits for PFC combined with one-cycle control technology was presented herein.The proposed AC/DC switching converter significantly helps improve the converter efficiency and its power factor value.
文摘This paper tested and analyzed heavy ion and proton induced single event effects(SEE) of a commercial DC/DC converter based on a 600 nm Bi-CMOS technology. Heavy ion induced single event transients(SET) testing has been carried out by using the Beijing HI-13 tandem accelerator at China Institute of Atomic Energy. Proton test has been carried out by using the Canadian TRIUMF proton accelerator. Both SET cross section versus linear energy transfer(LET) and proton energy has been measured. The main study conclusions are:(1) the DC/DC is both sensitive to heavy ion and proton radiations although at a pretty large feature size(600 nm), and threshold LET is about 0.06 Me V mg/cm^2;(2) heavy ion SET saturation cross section is about 5 magnitudes order larger than proton SET saturation cross section, which is consistent with the theory calculation result deduced by the RPP model and the proton nuclear reaction model;(3) on-orbit soft error rate(SER) prediction showed, on GEO orbit,proton induced SERs calculated by the heavy ion derived model are 4–5 times larger than those calculated by proton test data.