A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct...A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.展开更多
This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm posses...This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.展开更多
Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by t...Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by the cooperation between integrated steering control unit and pump & motor displacement controller. The steering simulation is conducted by using Simulink of Matlab. It is indicated that this steering control strategy can reduce the average vehicle speed automatically to achieve the driver's expected steering radius exactly in the case of en- suring not exceeding the system pressure threshold and no sideslip.展开更多
This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a ...This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.展开更多
The Sun’s slow periodic flux transfer to the Earth, the low frequency of Schumann Resonance, and the fixed DC voltage of the capacitor direct us toward direct current (DC) machines for electrical modeling purposes. T...The Sun’s slow periodic flux transfer to the Earth, the low frequency of Schumann Resonance, and the fixed DC voltage of the capacitor direct us toward direct current (DC) machines for electrical modeling purposes. The Earth exhibits dual characteristics of a motor generator set by motoring the mechanical Earth around its axis, while at the same time generating energy for its spherical capacitor. It follows that electrical and mechanical output of the Earth are powered by the magnitude of the flux transfer events, the constant DC voltage supply and any potential nuclear contribution within the core. Like an induction furnace, powerful magnetic flux from the Sun partially melts the outer iron core of the Earth and magnetizes the inner solid iron core. The solid inner magnetic core acts as a rotating armature similar to a DC machine. All electrical machines experience no load and full load power loss while in operation. Speed control of large rotating DC machines is well understood and has been applied in industry for over a century. Speed can be changed either by varying the field resistance and/or the armature resistance. The characteristic of a constant speed DC machine is such that a change in field resistance will cause a compensatory change in armature resistance to maintain velocity. In the case of the earth, a decrease in armature resistance results in an increase in volume of the iron core, which may result in greater seismic and volcanic activity. Climate change may be the direct result of changes in soil and sea water resistance, which we lump together as field resistance.展开更多
In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of ...In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.展开更多
A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yie...A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.展开更多
The high speed motor is effective to realize downsizing motor in an electric vehicle(EV).Switched Reluctance Motor(SRM)is possible to the high speed drive because the rotor structure has simple and robust.However,the ...The high speed motor is effective to realize downsizing motor in an electric vehicle(EV).Switched Reluctance Motor(SRM)is possible to the high speed drive because the rotor structure has simple and robust.However,the vibration and the acoustic noise are large from the drive principle.Moreover,the conventional complicated current excitation results in the difficulty of the torque controller design.To overcome these problems,the vector control has been proposed for SRM drive.However,the vector control has not been applied to the SRM in the high speed drive.In this paper,the drive conditions such as switching frequency,bus voltage for driving the SRM in the high speed region are clarified.It is shown that the proposed SRM can be driven by the vector control in the high speed region and can realize low vibration.展开更多
In recent years,the application of sensorless AC motor drives is expanding in areas ranging from industrial applications to household electrical appliances.As is well known,the advantages of sensorless motor drives in...In recent years,the application of sensorless AC motor drives is expanding in areas ranging from industrial applications to household electrical appliances.As is well known,the advantages of sensorless motor drives include lower cost,increased reliability,reduced hardware complexity,better noise immunity,and less maintenance requirements.With the development of modern industrial automation,more advanced sensorless control strategies are needed to meet the requirements of applications.For sensorless motor drives at low-and zero-speed operation,inverter nonlinearities and motor parameter variation have significant impact on the stability of control system.Meanwhile,high observer’s bandwidth is required in high-speed region.This paper introduces the state of art of recent progress in sensorless AC motor drives.In addition,this paper presents the sensorless control strategies we investigated for practical industrial and household applications.Both advanced sensorless drives of induction motor(IM)and permanent magnet synchronous motor(PMSM)are presented in this paper.展开更多
This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obta...This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obtained wind turbine model,variable speed control schemes are developed.Nonlinear tracking controllers are designed to achieve asymptotic tracking for a prescribed rotor speed reference signal so as to yield maximum wind power capture.Due to the difficulty of torsional angle measurement,an observer-based control scheme that uses only rotor speed information is further developed for global asymptotic output tracking.The effectiveness of the proposed control methods is illustrated by simulation results.展开更多
Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric tra...Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.展开更多
To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,an...To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.展开更多
This paper decribes the control of a high performance variable reluctance motor system for direct drive robotics and industrial automation. The control system of a motor comists of a drive unit and a digital controlle...This paper decribes the control of a high performance variable reluctance motor system for direct drive robotics and industrial automation. The control system of a motor comists of a drive unit and a digital controller, possessing two functions of tbe analog dosed-loop control of motor velocity and the digit dosed-loop control of motor position. Then it discusses the closed-loop control of current in the three phases of the motor and the control of the lead angle of the motor. Finally, it suggests a design of the control circuits of motor current, velocity and position. The closed loop control of the motor position is achieved by a digit cotroller which consists of a microprocessor and other electronic components. It can control two variable reluctance motors simultaneusly. In order to be used for directly driving robots, the digit cotroller is equipped with a universal interface.展开更多
This paper is dealing with a comparative analysis, from technical point of view of the solutions with the highest potentiality utilized in sonar heads drives. Even though the use of DC servomotors is a convenient solu...This paper is dealing with a comparative analysis, from technical point of view of the solutions with the highest potentiality utilized in sonar heads drives. Even though the use of DC servomotors is a convenient solution for most customers, from some modem analysis criteria points of view, this type of drive system has a low reliability and a greater impact on the environment, compared to AC servomotors. From this class of AC servomotors, high behaviors, in such an application, have stepper motors and electronically commutated motor (brushless DC). That is why, analysis in this paper, balances these two classes of AC servomotors. The systems performed are analyzed in Matlab/Simulink and PowerSim environments.展开更多
新型电力系统的惯性低,虚拟直流电机控制可以加强系统惯性和阻尼。多储能变换器应该考虑荷电状态(State of charge,SOC)均衡问题,提高系统稳定性。针对虚拟直流电机控制的多储能SOC均衡问题,利用直流电机机端电压和电枢电流的下垂特性,...新型电力系统的惯性低,虚拟直流电机控制可以加强系统惯性和阻尼。多储能变换器应该考虑荷电状态(State of charge,SOC)均衡问题,提高系统稳定性。针对虚拟直流电机控制的多储能SOC均衡问题,利用直流电机机端电压和电枢电流的下垂特性,提出引入SOC离差及变均衡系数的变电枢电阻控制;针对下垂引起的电压偏移问题,采用虚拟直流电机转速补偿,用母线电容瞬时功率替代传统虚拟直流电机控制中电压PI控制,给定系统功率需求,减少比例积分环节个数。以两台蓄电池为例,在Simulink中进行仿真,并与参考文献的变电枢电阻函数对比可知,所提控制策略可抑制直流母线电压跌落,调节SOC均衡过程,提高其均衡速度和精度。展开更多
文摘A new kind of dynamic neural network--diagonal recurrent neural network (DRNN) and its learning method and architecture are presented. A direct adaptive control scheme is also developed that is applied to a DC (Direct Current) speed control system with the ability to auto-tune PI (Proportion Integral) parameters based on combining DRNN with PI controller. The simulation results of DRNN show better control performances and potential practical use in comparison with PI controller.
文摘This paper proposes the current search (CS) metaheuristics conceptualized from the electric current flowing through electric networks for optimization problems with continuous design variables. The CS algorithm possesses two powerful strategies, exploration and exploitation, for searching the global optimum. Based on the stochastic process, the derivatives of the objective function is unnecessary for the proposed CS. To evaluate its performance, the CS is tested against several unconstrained optimization problems. The results obtained are compared to those obtained by the popular search techniques, i.e., the genetic algorithm (GA), the particle swarm optimization (PSO), and the adaptive tabu search (ATS). As results, the CS outperforms other algorithms and provides superior results. The CS is also applied to a constrained design of the optimum PID controller for the dc motor speed control system. From experimental results, the CS has been successfully applied to the speed control of the dc motor.
基金Sponsored by the Ministerial Level Advanced Research Foundation(2630103)
文摘Steering control strategy for high-speed tracked vehicle with hydrostatic drive is designed based on analyzing the fundamental steering theories of the hydrostatic drive tracked vehicle. The strategy is completed by the cooperation between integrated steering control unit and pump & motor displacement controller. The steering simulation is conducted by using Simulink of Matlab. It is indicated that this steering control strategy can reduce the average vehicle speed automatically to achieve the driver's expected steering radius exactly in the case of en- suring not exceeding the system pressure threshold and no sideslip.
文摘This paper considers minimization of resistive and frictional power dissipation in a separately excited DC motor based incremental motion drive (IMD). The drive is required to displace a given, fixed load through a definite angle in specified time, with minimum energy dissipation in the motor windings and minimum frictional losses. Accordingly, an energy optimal (EO) control strategy is proposed in which the motor is first accelerated to track a specific speed profile for a pre-determined optimal time period. Thereafter, both armature and field power supplies are disconnected, and the motor decelerates and comes to a halt at the desired displacement point in the desired total displacement time. The optimal time period for the initial acceleration phase is computed so that the motor stores just enough energy to decelerate to the final position at the specified displacement time. The parameters, such as the moment of inertia and coefficient of friction, which depend on the load and other external conditions, have been obtained using system identification method. Comparison with earlier control techniques is included. The results show that the proposed EO control strategy results in significant reduction of energy losses compared to the existing ones.
文摘The Sun’s slow periodic flux transfer to the Earth, the low frequency of Schumann Resonance, and the fixed DC voltage of the capacitor direct us toward direct current (DC) machines for electrical modeling purposes. The Earth exhibits dual characteristics of a motor generator set by motoring the mechanical Earth around its axis, while at the same time generating energy for its spherical capacitor. It follows that electrical and mechanical output of the Earth are powered by the magnitude of the flux transfer events, the constant DC voltage supply and any potential nuclear contribution within the core. Like an induction furnace, powerful magnetic flux from the Sun partially melts the outer iron core of the Earth and magnetizes the inner solid iron core. The solid inner magnetic core acts as a rotating armature similar to a DC machine. All electrical machines experience no load and full load power loss while in operation. Speed control of large rotating DC machines is well understood and has been applied in industry for over a century. Speed can be changed either by varying the field resistance and/or the armature resistance. The characteristic of a constant speed DC machine is such that a change in field resistance will cause a compensatory change in armature resistance to maintain velocity. In the case of the earth, a decrease in armature resistance results in an increase in volume of the iron core, which may result in greater seismic and volcanic activity. Climate change may be the direct result of changes in soil and sea water resistance, which we lump together as field resistance.
文摘In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitable, leading to unstable operation. The rapid intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.
文摘A new type of brushless DC motor has been developed by using a square wave rare earth permanent magnet synchronous motor with its double loop control circuit. The double loop control scheme of the drive system yields a combination of desired characteristics including simplified control structure, small ripple torque, high speed accuracy, wide operating speed range, and fast dynamic response. Experimental results confirm excellent characteristics of the motor.
文摘The high speed motor is effective to realize downsizing motor in an electric vehicle(EV).Switched Reluctance Motor(SRM)is possible to the high speed drive because the rotor structure has simple and robust.However,the vibration and the acoustic noise are large from the drive principle.Moreover,the conventional complicated current excitation results in the difficulty of the torque controller design.To overcome these problems,the vector control has been proposed for SRM drive.However,the vector control has not been applied to the SRM in the high speed drive.In this paper,the drive conditions such as switching frequency,bus voltage for driving the SRM in the high speed region are clarified.It is shown that the proposed SRM can be driven by the vector control in the high speed region and can realize low vibration.
基金This work was supported by the Research Fund for the National Key Research and Development Program(2016YFE0102800).
文摘In recent years,the application of sensorless AC motor drives is expanding in areas ranging from industrial applications to household electrical appliances.As is well known,the advantages of sensorless motor drives include lower cost,increased reliability,reduced hardware complexity,better noise immunity,and less maintenance requirements.With the development of modern industrial automation,more advanced sensorless control strategies are needed to meet the requirements of applications.For sensorless motor drives at low-and zero-speed operation,inverter nonlinearities and motor parameter variation have significant impact on the stability of control system.Meanwhile,high observer’s bandwidth is required in high-speed region.This paper introduces the state of art of recent progress in sensorless AC motor drives.In addition,this paper presents the sensorless control strategies we investigated for practical industrial and household applications.Both advanced sensorless drives of induction motor(IM)and permanent magnet synchronous motor(PMSM)are presented in this paper.
基金supported by the Key Project of National Natural Science Foundation of China(61533009)the 111 Project(B08015)the Research Projects(KQC201105300002A,JCY20130329152125731,JCYJ20150403161923519)
文摘This paper presents a variable speed control strategy for wind turbines in order to capture maximum wind power.Wind turbines are modeled as a two-mass drive-train system with generator torque control.Based on the obtained wind turbine model,variable speed control schemes are developed.Nonlinear tracking controllers are designed to achieve asymptotic tracking for a prescribed rotor speed reference signal so as to yield maximum wind power capture.Due to the difficulty of torsional angle measurement,an observer-based control scheme that uses only rotor speed information is further developed for global asymptotic output tracking.The effectiveness of the proposed control methods is illustrated by simulation results.
文摘Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.
基金This research was funded by the Hebei Science and Technology Support Program Project(19273703D)the Hebei Higher Education Science and Technology Research Project(ZD2020318).
文摘To better regulate the speed of brushless DC motors,an improved algorithm based on the original Glowworm Swarm Optimization is proposed.The proposed algorithm solves the problems of poor robustness,slow convergence,and low accuracy exhibited by traditional PID controllers.When selecting the glowworm neighborhood set,an optimization scheme based on the growth and competition behavior of weeds is applied to a single glowworm to prevent falling into a local optimal solution.After the glowworm’s position is updated,the league selection operator is introduced to search for the global optimal solution.Combining the local search ability of the invasive weed optimization with the global search ability of the league selection operator enhances the robustness of the algorithm and also accelerates the convergence speed of the algorithm.The mathematical model of the brushless DC motor is established,the PID parameters are tuned and optimized using improved Glowworm Swarm Optimization algorithm,and the speed of the brushless DC motor is adjusted.In a Simulink environment,a double closed-loop speed control model was established to simulate the speed control of a brushless DC motor,and this simulation was compared with a traditional PID control.The simulation results show that the model based on the improved Glowworm Swarm Optimization algorithm has good robustness and a steady-state response speed for motor speed control.
文摘This paper decribes the control of a high performance variable reluctance motor system for direct drive robotics and industrial automation. The control system of a motor comists of a drive unit and a digital controller, possessing two functions of tbe analog dosed-loop control of motor velocity and the digit dosed-loop control of motor position. Then it discusses the closed-loop control of current in the three phases of the motor and the control of the lead angle of the motor. Finally, it suggests a design of the control circuits of motor current, velocity and position. The closed loop control of the motor position is achieved by a digit cotroller which consists of a microprocessor and other electronic components. It can control two variable reluctance motors simultaneusly. In order to be used for directly driving robots, the digit cotroller is equipped with a universal interface.
文摘This paper is dealing with a comparative analysis, from technical point of view of the solutions with the highest potentiality utilized in sonar heads drives. Even though the use of DC servomotors is a convenient solution for most customers, from some modem analysis criteria points of view, this type of drive system has a low reliability and a greater impact on the environment, compared to AC servomotors. From this class of AC servomotors, high behaviors, in such an application, have stepper motors and electronically commutated motor (brushless DC). That is why, analysis in this paper, balances these two classes of AC servomotors. The systems performed are analyzed in Matlab/Simulink and PowerSim environments.
文摘新型电力系统的惯性低,虚拟直流电机控制可以加强系统惯性和阻尼。多储能变换器应该考虑荷电状态(State of charge,SOC)均衡问题,提高系统稳定性。针对虚拟直流电机控制的多储能SOC均衡问题,利用直流电机机端电压和电枢电流的下垂特性,提出引入SOC离差及变均衡系数的变电枢电阻控制;针对下垂引起的电压偏移问题,采用虚拟直流电机转速补偿,用母线电容瞬时功率替代传统虚拟直流电机控制中电压PI控制,给定系统功率需求,减少比例积分环节个数。以两台蓄电池为例,在Simulink中进行仿真,并与参考文献的变电枢电阻函数对比可知,所提控制策略可抑制直流母线电压跌落,调节SOC均衡过程,提高其均衡速度和精度。