A mathematical formulation is developed to represent the magneticfield intensity, the current density, the velocity field, the temperature field in the DC arc furnace bath.The governing equations are solved numericall...A mathematical formulation is developed to represent the magneticfield intensity, the current density, the velocity field, the temperature field in the DC arc furnace bath.The governing equations are solved numerically to describe the magnetic field intensity profiles, the current density profiles, Lorentz force profiles, streamline profiles, the velocity profiles and temperature profiles in the 30t DC-EAF bath. The theoretical predictions of temperature field are in good agreement with measurement in the 30t DC-EAF bath, and the recirculation rate of flow is also in good agreement with published estimation.展开更多
A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model i...A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.展开更多
文摘A mathematical formulation is developed to represent the magneticfield intensity, the current density, the velocity field, the temperature field in the DC arc furnace bath.The governing equations are solved numerically to describe the magnetic field intensity profiles, the current density profiles, Lorentz force profiles, streamline profiles, the velocity profiles and temperature profiles in the 30t DC-EAF bath. The theoretical predictions of temperature field are in good agreement with measurement in the 30t DC-EAF bath, and the recirculation rate of flow is also in good agreement with published estimation.
文摘A comprehensive mathematical model has been developed to describe the interaction of the multiple physics fields during the conventional DC casting and LFEC (low frequency electromagnetic casting) process. The model is based on a combination of the commercial finite element package ANSYS and the commercial finite volume package FLUENT, with the former for the calculation of the electromagnetic field and the latter for the calculation of the magnetic driven fluid flow, heat transfer and solidification. Moreover, the model has been verified against the temperature measurements obtained from two 7XXX aluminum alloy billets of 200mm diameter, cast during the conventional DC casting and the LFEC casting processes. In addition, a measurement of the sump shape of the billets were carried out by using addition melting metal of Al-30%Cu alloy into the billets during casting process. There was a good agreement between the calculated results and the measured results. Further, comparison of the calculated results during the LFEC process with that during the conventional DC casting process indicated that velocity patterns, temperature profiles and the sump depth are strongly modified by the application of a low frequency electromagnetic field during the DC casting.