Cu films with thickness of 630-1300nm were deposited on glass substrates without heating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to 0.5, 1.0 and 1.5Pa respectively. The target voltage was...Cu films with thickness of 630-1300nm were deposited on glass substrates without heating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to 0.5, 1.0 and 1.5Pa respectively. The target voltage was fixed at 500V but the target current increased from 200 to 1150mA with Ar pressure increasing. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used to observe the structural characterization of the films. The resistivity of the films was measured using four-point probe technique. At all the Ar pressures, the Cu films have mixture crystalline orientations of [111], [200] and [220] in the direction of the film growth. The film deposited at lower pressure shows more [111] orientation while that deposited at higher pressure has more [220] orientation. The amount of larger grains in the film prepared at 0.5Pa Ar pressure is slightly less than that prepared at 1.0Pa and 1.5Pa Ar pressures. The resistivities of the films prepared at three different Ar pressures represent few differences, about 3-4 times of that of bulk material. Besides the deposition rate increases with Ar pressure because of the increase in target current. The contribution of the bombardment of energetic reflected Argon atoms to these phenomena is discussed.展开更多
Pseudobinary Ti 1 x Al x N films were synthesized on Si (100) wafer by DC magnetron sputtering method using Ti 1 x Al x alloy targets with different Al contents. The composition of the Ti 1 x Al x N films was determin...Pseudobinary Ti 1 x Al x N films were synthesized on Si (100) wafer by DC magnetron sputtering method using Ti 1 x Al x alloy targets with different Al contents. The composition of the Ti 1 x Al x N films was determined by electron probe microanalysis (EPMA). Structural characteristic was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). First principles virtual crystal calculations for the Ti 1 x Al x N disordered alloys were used for the XRD simulations. The crystalline structure of the Ti 0.61 Al 0.39 N film was found to be a metastable single phase with NaCl (B1) structure. Its lattice constant, determined by XRD, was less than that of pure TiN. With the increase of Al content, the lattice constant of B1 phase was continually decreased, while würtzite (B4) structure was observed in the Ti 0.40 Al 0.60 N film. When x reached 0.75, the B1 phase disappeared, and only B4 phase was remained. The critical Al content for the phase transition from NaCl to würtzite structure in this paper was about 0.60, which could be explained by both the thermodynamic model and the electron theory. As-deposited Ti 1 x Al x N films exhibited excellent mechanical properties. Hardness measurements of Ti 1 x Al x N films showed a high value of 45GPa for x=0.39 and was decreased to value of 27 GPa with increasing Al at x=0.60.展开更多
TiO2 thin films were prepared by DC magnetron sputtering with the oxygen flow rate higher than the threshold. The film deposited for 5 h was of anatase phase with a preferred orientation along the <220> directio...TiO2 thin films were prepared by DC magnetron sputtering with the oxygen flow rate higher than the threshold. The film deposited for 5 h was of anatase phase with a preferred orientation along the <220> direction, but the films deposited for 2 and 3 h were amorphous. The transmittance and photocatalytic activity of the TiO2 films increased constantly with increasing film thickness. When the annealing temperature was lower than 700℃, only anatase grew in the TiO2 film. TiO2 phase changed from anatase to rutile when the annealing temperature was above 800℃. The photocatalytic activity decreased with increasing annealing temperature.展开更多
The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivi...The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4 x 10-4 ~.m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H.展开更多
Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characteriz...Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characterized with X-Ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy measurements, showed a composed structure of Cu3N crystallites with anti-ReO3 structure and a slight oxidation of the resulted film.The crystal structure and growth rate of Cu3N films were affected strongly by substrate temperature. The preferred crystalline orientation of Cu3N films were (111) and (200) at RT, 100℃. These peaks decayed at 200℃ and 300℃ only Cu (111) peak was noticed. Growth of Cu3N films at 100℃ is the optimum substrate temperature for producing high-quality (111) Cu3N films. The deposition rate of Cu3N films estimated to be in range of 18-30 nm/min increased while the resistivity and the microhardness of Cu3N films decreased when the temperature of glass substrate increased.展开更多
TiZrV film is mainly applied in the ultra-high vacuum pipes of storage rings. Thin fihn coatings of palladium, which are added onto the TiZrV film to increase the service life of nonevaporable getters and enhance H2 p...TiZrV film is mainly applied in the ultra-high vacuum pipes of storage rings. Thin fihn coatings of palladium, which are added onto the TiZrV film to increase the service life of nonevaporable getters and enhance H2 pumping speed, were deposited on the inner face of stainless steel pipes by dc magnetron sputtering using argon gas as the sputtering gas. The TiZrV-Pd film properties were investigated by atomic force microscope (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and X-Ray Diffraction (XRD). The grain size of TiZrV and Pd films were about 0.42 1.3 nm and 8.5-18.25 nm respectively. It was found that the roughness of TiZrV films is small, about 2 4 nm, but for Pd film it is large, about 17 19 nm. The PP At. % of Pd in TiZrV/Pd films varied from 86.84 to 87.56 according to the XPS test results.展开更多
The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of th...The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of the Si target.By virtue of electron-probe microanalysis, X-ray diffraction analysis and scanning electron microscopy, the influence of the Si content on the coating composition, phase constituents, deposition rate, surface morphology and microstructure was investigated systematically. In addition, the change rules of micro-hardness, internal stress, adhesion, friction coefficient and wear rate with increasing Si content were also obtained. In this work, the precipitation of silicon in the coating was found.With increasing Si content, the coating microstructure gradually evolved from continuous columnar to discontinuous columnar and quasi-equiaxed crystals; accordingly, the coating inner stress first declined sharply and then kept almost constant. Both the coating hardness and the friction coefficient have the same change tendency with the increase of the Si content, namely increasing at first and then decreasing. The Cr–Si–N coating presented the highest hardness and average friction coefficient for an Si content of about 9.7 at.%, but the wear resistance decreased slightly due to the high brittleness.The above phenomenon was attributed to a microstructural evolution of the Cr–Si–N coatings induced by the silicon addition.展开更多
As anti-reflecting thin films and transparent electrodes of solar cells, indium tin oxide (ITO) thin films were prepared on glass substrates by DC magnetron sputtering process. The main sputtering conditions were sp...As anti-reflecting thin films and transparent electrodes of solar cells, indium tin oxide (ITO) thin films were prepared on glass substrates by DC magnetron sputtering process. The main sputtering conditions were sputtering power, substrate temperature and work pressure. The influence of the above sputtering conditions on the transmittance and conductivity of the deposited ITO films was investigated. The experimental results show that, the transmittance and the resistivity decrease as the sputtering power increases from 30 to 90 W. When the substrate temperature increases from 25 to 150℃, the transmittance increases slightly whereas the resistivity decreases. As the work pressure increases from 0.4 to 2.0 Pa, the transmittance decreases and the resistivity increases. When the sputtering power, substrate temperature and work pressure are 30 W, 150℃, 0.4 Pa respectively, the ITO thin films exhibit good electrical and optical properties, with resistivity below 10^-4 Ωcm and the transmittance in the visible wave band beyond 80%. Therefore, the ITO thin films are suitable as transparent electrodes of solar cells.展开更多
Copper nitride thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering at various N2-gas partial pressures and room temperature. Xray diffraction measurements showed that t...Copper nitride thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering at various N2-gas partial pressures and room temperature. Xray diffraction measurements showed that the films were composed of Cu3N crystallites and exhibited a preferential orientation of the [111] direction at a low nitrogen gas (N2) partial pressure. The film growth preferred the [111] and the [100] direction at a high N2 partial pressure. Such preferential film growth is interpreted as being due to the variation in the Copper (Cu) nitrification rate with the N2 pressure. The N2 partial pressure affects not only the crystal structure of the film but also the deposition rate and the resistivity of the Cu3N film. In our experiment, the deposition rate of Cu3N films was 18 nm/min to 30 nm/min and increased with the N2 partial pressure. The resistivity of the Cu3N films increased sharply with the increasing N2 partial pressure. At a low N2 partial pressure, the Cu3N films showed a metallic conduction mechanism through the Cu path, and at a high N2 partial pressure, the conductivity of the Cu3N films showed a semiconductor conduction mechanism.展开更多
TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-r...TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction(XRD),atomic force microscopy(AFM) and ultraviolet spectrophotometer,respectively.The results indicated that working pressure was the key deposition parameter in?uencing the TiO2 film phase composition at room temperature,which directly affected its photocatalytic activity.With increasing working pressure,the target self-bias decreases monotonously.Therefore,low temperature TiO2 phase(anatase) could be deposited with high working pressure.The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution,which the degradation rate reached the maximum(35%) after irradiation by ultraviolet light for 1 h.展开更多
TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, hi...TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, high dielectric constant, wide band gap, high wear resistance and stability, etc, for which make it being used in many fields. This paper aims to investigate the optical characterizatio n of thin film TiO2 on silicon wafer. The TiO2 thin films were prepared by DC re active magnetron sputtering process from Ti target. The reflectivity of the film s was measured by UV-3101PC, and the index of refraction (n) and extinction coef ficient (k) were measured by n & k Analyzer 1200.展开更多
Porous Pt thin films were prepared on carbon papers by a single-step ultra-high dc magnetron sputtering method to obtain ideal electrodes for proton exchange membrane fuel cells.The platinum loading of the electrocata...Porous Pt thin films were prepared on carbon papers by a single-step ultra-high dc magnetron sputtering method to obtain ideal electrodes for proton exchange membrane fuel cells.The platinum loading of the electrocatalyst layer is controlled at about 0.1 mg·cm^(-2).Structural characteristics and catalytic activities of the films were analyzed by scanning electron microscopy,atomic force microscopy,X-ray diffraction,cyclic voltammetry,and stress durability testing methods.The effect of treatment conditions of a substrate on the structural and performance characteristics of the catalytic films was shown as well.Films produced on acid-treated carbon papers at the argon pressure of 0.01 mbar possessed a homogeneous,highly developed surface along with a porous structure.Compared to Pt/TCPW(Toray carbon papers soaked in ultrapure water)electrodes,the film obtained on the acid-treated substrate had a larger electrochemical surface area(163.33 m^(2)·g^(-1))and exhibited better catalytic stability and durability due to a porous structure as a result of Pt particle accumulation.展开更多
Cu films with thickness of about 500nm were deposited on glass substrateswithout heating by DC magnetron sputtering in pure Ar gas of 1.0Pa. The sputtering powers weremaintained at 390V X 0.27A, 430V X 0.70A and 450V ...Cu films with thickness of about 500nm were deposited on glass substrateswithout heating by DC magnetron sputtering in pure Ar gas of 1.0Pa. The sputtering powers weremaintained at 390V X 0.27A, 430V X 0.70A and 450V X l.04A, and the corresponding deposition rates ofCu film reached 35nm/min, l04nm/min and 167nm/min. X-ray diffraction, scanning electron microscopyand atomic force microscopy were used to observe the structural characteristics of the films. Theresistance of the films was measured using four-point probe technique. The amount of larger grainsincreases and the resistivity of the films decreases evidently with an increase in sputtering power.It is considered that the increase in deposition rate with sputtering power mainly weakens theinfluence of residual gas atoms on the growing film, and increases substrate and gas temperatures,resulting in the increase in grain size and the decrease in resistivity of the Cu film.展开更多
Single(200)-oriented TiN thin films were deposited on quartz substrate by direct current(DC) magnetron reactive sputtering process at a wide range of substrate temperature from 200 to 600 ℃.The effects of sputtering ...Single(200)-oriented TiN thin films were deposited on quartz substrate by direct current(DC) magnetron reactive sputtering process at a wide range of substrate temperature from 200 to 600 ℃.The effects of sputtering pressure and substrate temperature on the crystalline nature,morphology,electrical and optical properties of the deposited thin films were analyzed by X-ray diffraction(XRD),atomic force microscopy(AFM),four-point resistivity test system and ultraviolet visible near-infrared(UV-Vis-NIR) spectroscopy,respectively.The results show that single(200)-oriented TiN thin films can be obtained at a wide range of substrate temperature from 200 to 600 ℃ with the grain size increasing from 35.9 to 64.5 nm.The resistivity of the product is as low as95 μΩ·cm,and the value of the optical reflectance is above68 % in the near-infrared(NIR) range of 760-1500 nm.展开更多
CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ra...CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and UV-visible spectrophotometer, respectively. The results showed that carbon-doped titanium monoxide films (C-TiO) with a carbon concentration of 5.8 at.% were obtained in an AffCO2 mixed atmosphere. However, carbon-doped futile and anatase (C-TiO2) with a carbon concentration of about 1.4 at.% were obtained in an Ar/CO2/O2 mixed atmosphere. The optical band gaps of C-TiO and C-TiO2 were about 2.6 and 2.9 eV, respectively. Both of them were narrower than that of pure TiO2 films. Films with narrowed optical band gap energy are promising in promoting their photo-catalytic activity.展开更多
Nanocrystalline ZrB2 film and nanocomposite Zr-B-O-N films were prepared by non-reactive as well as re- active magnetron sputtering techniques, respectively. By means of X-ray diffraction analysis, electron probe micr...Nanocrystalline ZrB2 film and nanocomposite Zr-B-O-N films were prepared by non-reactive as well as re- active magnetron sputtering techniques, respectively. By means of X-ray diffraction analysis, electron probe microanalysis, X-ray photoelectron spectroscopy, and scanning electron microscopy, the influence of nitrogen flow ratio on the film microstructure and characteristics were investigated systematically, including the depo- sition rate, chemical compositions, phase constituents, grain size, chemical bonding, as well as cross-sectional morphologies. Meanwhile, the hardness and adhesion of above films were also evaluated by micro-indentation method and a scratch tester. With increasing the nitrogen flow ratio, the deposition rate of above films de- creased approximately linearly, whereas the contents of N and O in the films increased gradually and tended to saturation. Moreover, the film microstructure was also altered gradually from a fine columnar microstructure to a featureless glass-structure. As the nitrogen flow ratio was 11.7%, the Zr-B-O-N film possessed an typical nanocomposite structure and presented good mechanical properties. During the process of reactive sputtering of metal borides, the introduction of nitrogen can show a pronounced suppression of columnar grain growth and strong nanocomposite structure forming ability.展开更多
Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical ...Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6.4 10 4 cm were obtained at a growth temperature of225 C and sputteringpower of 40 W, with carrier mobility of 33.0 cm 2 V 1 s 1 and carrier concentration of 2.8 10 20 cm 3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.展开更多
The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigate...The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.展开更多
Several nc-TiN/a-TiB2 thin films comprised of nanocrystalline (nc-) TiN and amor phous (a-) TiB2 phases were deposited on Si(100) at room temperature by reactive unbalanced dc magnetron sputtering, followed by vacuum ...Several nc-TiN/a-TiB2 thin films comprised of nanocrystalline (nc-) TiN and amor phous (a-) TiB2 phases were deposited on Si(100) at room temperature by reactive unbalanced dc magnetron sputtering, followed by vacuum annealed at 400, 600, 80 0 and 1000℃ for 1h, respectively. Effects of B content on microstructure, mecha nical behaviors and thermal microstructure stability have been investigated by X -ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and nanoindentation measurements. The results indicated that B addition greatly affected both microstructure and mechanical behavior of nc-Ti N/a-TiB2 thin films. With increasing B content the grain size decreased. A maxim um hardness value of about 33GPa was obtained at B content of about 19at.%. The improved mechanical properties of nc-TiN/a-TiB2 films with the addition of B int o TiN were attributed to their densified microstructure with development of fine grain size. Only addition of sufficient B could restrain grain growth during an nealing. High B content resulted in high microstructure stability. The crystalli zation of amorphous matrix occurred at about 800℃, forming TiB or TiB2 crystall ite, depending on B content. Before that no change in bonding configuration was found.展开更多
In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear pe...In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear performance and oxidation resistance of TiSiN/CrN film coatings deposited by direct current(DC)reactive magnetron sputtering is investigated.The results show that vanadium incorporation significantly decreases the oxidation resistance of the coatings.In general,two layers are formed during the oxidation process:i)Ti(V)O_(2) on top,followed by a protective layer,which is subdivided into two layers,Cr_(2)O_(3) and Si-O.ii)The diffusion of V controls the oxidation of V-containing coatings.The addition of vanadium improves the wear resistance of coatings,and the wear rate decreases with increasing V content in the coatings;however,the friction coefficient is independent of the chemical composition of the coatings.The wear of the V-containing coatings is driven by polishing wear.展开更多
基金The authors would like to thank Prof. Y.B. Wang and Mr. S. Liang of the Department of Material Physics for supporting AFM observations. The authors also would like to thank Ms. J.P. He of the State Key Laboratory for Advanced Metals and Materials for sup
文摘Cu films with thickness of 630-1300nm were deposited on glass substrates without heating by DC magnetron sputtering in pure Ar gas. Ar pressure was controlled to 0.5, 1.0 and 1.5Pa respectively. The target voltage was fixed at 500V but the target current increased from 200 to 1150mA with Ar pressure increasing. X-ray diffraction, scanning electron microscopy and atomic force microscopy were used to observe the structural characterization of the films. The resistivity of the films was measured using four-point probe technique. At all the Ar pressures, the Cu films have mixture crystalline orientations of [111], [200] and [220] in the direction of the film growth. The film deposited at lower pressure shows more [111] orientation while that deposited at higher pressure has more [220] orientation. The amount of larger grains in the film prepared at 0.5Pa Ar pressure is slightly less than that prepared at 1.0Pa and 1.5Pa Ar pressures. The resistivities of the films prepared at three different Ar pressures represent few differences, about 3-4 times of that of bulk material. Besides the deposition rate increases with Ar pressure because of the increase in target current. The contribution of the bombardment of energetic reflected Argon atoms to these phenomena is discussed.
基金supported by "University Innovation and Research Training Program (China)" (No. 2009003)the Natural Science Foundation of Jiangsu Province (No.BK2011252)the Industry Science and Technology Supported Plan of Changzhou (No. CE20110012)
文摘Pseudobinary Ti 1 x Al x N films were synthesized on Si (100) wafer by DC magnetron sputtering method using Ti 1 x Al x alloy targets with different Al contents. The composition of the Ti 1 x Al x N films was determined by electron probe microanalysis (EPMA). Structural characteristic was performed by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HRTEM). First principles virtual crystal calculations for the Ti 1 x Al x N disordered alloys were used for the XRD simulations. The crystalline structure of the Ti 0.61 Al 0.39 N film was found to be a metastable single phase with NaCl (B1) structure. Its lattice constant, determined by XRD, was less than that of pure TiN. With the increase of Al content, the lattice constant of B1 phase was continually decreased, while würtzite (B4) structure was observed in the Ti 0.40 Al 0.60 N film. When x reached 0.75, the B1 phase disappeared, and only B4 phase was remained. The critical Al content for the phase transition from NaCl to würtzite structure in this paper was about 0.60, which could be explained by both the thermodynamic model and the electron theory. As-deposited Ti 1 x Al x N films exhibited excellent mechanical properties. Hardness measurements of Ti 1 x Al x N films showed a high value of 45GPa for x=0.39 and was decreased to value of 27 GPa with increasing Al at x=0.60.
基金supported by the National Natural Science Foundation of China(No.50001013)Hundred-Talent Project of CAS and the NSFC for Outstanding Young Scientists(No.59625103).
文摘TiO2 thin films were prepared by DC magnetron sputtering with the oxygen flow rate higher than the threshold. The film deposited for 5 h was of anatase phase with a preferred orientation along the <220> direction, but the films deposited for 2 and 3 h were amorphous. The transmittance and photocatalytic activity of the TiO2 films increased constantly with increasing film thickness. When the annealing temperature was lower than 700℃, only anatase grew in the TiO2 film. TiO2 phase changed from anatase to rutile when the annealing temperature was above 800℃. The photocatalytic activity decreased with increasing annealing temperature.
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA050501)
文摘The indium-tin oxide (ITO) film as the antireflection layer and front electrodes is of key importance to obtaining high efficiency Si heterojunction (HJ) solar cells. To obtain high transmittance and low resistivity ITO films by direct-current (DC) magnetron sputtering, we studied the impacts of the ITO film deposition conditions, such as the oxygen flow rate, pressure, and sputter power, on the electrical and optical properties of the ITO films. ITO films of resistivity of 4 x 10-4 ~.m and average transmittance of 89% in the wavelength range of 380-780 nm were obtained under the optimized conditions: oxygen flow rate of 0.1 sccm, pressure of 0.8 Pa, and sputtering power of 110 W. These ITO films were used to fabricate the single-side HJ solar cell without an intrinsic a-Si:H layer. However, the best HJ solar cell was fabricated with a lower sputtering power of 95 W, which had an efficiency of 11.47%, an open circuit voltage (Voc) of 0.626 V, a filling factor (FF) of 0.50, and a short circuit current density (Jsc) of 36.4 mA/cm2. The decrease in the performance of the solar cell fabricated with high sputtering power of 110 W is attributed to the ion bombardment to the emitter. The Voc was improved to 0.673 V when a 5 nm thick intrinsic a-Si:H layer was inserted between the (p) a-Si:H and (n) c-Si layer. The higher Voc of 0.673 V for the single-side HJ solar cell implies the excellent c-Si surface passivation by a-Si:H.
文摘Copper nitride thin film was deposited on glass substrates by reactive DC (direct current) magnetron sputtering at a 0.5 Pa N2 partial pressure and different substrate temperatures. The as-prepared film, characterized with X-Ray diffraction, atomic force microscopy, and X-ray photoelectron spectroscopy measurements, showed a composed structure of Cu3N crystallites with anti-ReO3 structure and a slight oxidation of the resulted film.The crystal structure and growth rate of Cu3N films were affected strongly by substrate temperature. The preferred crystalline orientation of Cu3N films were (111) and (200) at RT, 100℃. These peaks decayed at 200℃ and 300℃ only Cu (111) peak was noticed. Growth of Cu3N films at 100℃ is the optimum substrate temperature for producing high-quality (111) Cu3N films. The deposition rate of Cu3N films estimated to be in range of 18-30 nm/min increased while the resistivity and the microhardness of Cu3N films decreased when the temperature of glass substrate increased.
基金Supported by National Natural Science Funds of China(11205155)Fundamental Research Funds for the Central Universities(WK2310000041)
文摘TiZrV film is mainly applied in the ultra-high vacuum pipes of storage rings. Thin fihn coatings of palladium, which are added onto the TiZrV film to increase the service life of nonevaporable getters and enhance H2 pumping speed, were deposited on the inner face of stainless steel pipes by dc magnetron sputtering using argon gas as the sputtering gas. The TiZrV-Pd film properties were investigated by atomic force microscope (AFM), scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS) and X-Ray Diffraction (XRD). The grain size of TiZrV and Pd films were about 0.42 1.3 nm and 8.5-18.25 nm respectively. It was found that the roughness of TiZrV films is small, about 2 4 nm, but for Pd film it is large, about 17 19 nm. The PP At. % of Pd in TiZrV/Pd films varied from 86.84 to 87.56 according to the XPS test results.
基金supported by the Global Frontier Program through the Global Frontier Hybrid Interface Materials(GFHIM)of the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning(No.2013M3A6B1078874)funded by the National Nature Science Foundation of China(No.51301181)+2 种基金the Tianjin Key Research Program of Application Foundation and Advanced Technology(No.15JCZDJC39700)the Tianjin Science and Technology correspondent project(No.16JCTPJC49500)the Innovation Team Training Plan of Tianjin Universities and colleges(No.TD12-5043)
文摘The Cr–Si–N coatings were prepared by combining system of high-power impulse magnetron sputtering and pulsed DC magnetron sputtering. The Si content in the coating was adjusted by changing the sputtering power of the Si target.By virtue of electron-probe microanalysis, X-ray diffraction analysis and scanning electron microscopy, the influence of the Si content on the coating composition, phase constituents, deposition rate, surface morphology and microstructure was investigated systematically. In addition, the change rules of micro-hardness, internal stress, adhesion, friction coefficient and wear rate with increasing Si content were also obtained. In this work, the precipitation of silicon in the coating was found.With increasing Si content, the coating microstructure gradually evolved from continuous columnar to discontinuous columnar and quasi-equiaxed crystals; accordingly, the coating inner stress first declined sharply and then kept almost constant. Both the coating hardness and the friction coefficient have the same change tendency with the increase of the Si content, namely increasing at first and then decreasing. The Cr–Si–N coating presented the highest hardness and average friction coefficient for an Si content of about 9.7 at.%, but the wear resistance decreased slightly due to the high brittleness.The above phenomenon was attributed to a microstructural evolution of the Cr–Si–N coatings induced by the silicon addition.
基金Project supported by the National Natural Science Foundation of China(No.61076063)the Fujian Provincial Natural of Science Foundation of China(No.2009J01285)
文摘As anti-reflecting thin films and transparent electrodes of solar cells, indium tin oxide (ITO) thin films were prepared on glass substrates by DC magnetron sputtering process. The main sputtering conditions were sputtering power, substrate temperature and work pressure. The influence of the above sputtering conditions on the transmittance and conductivity of the deposited ITO films was investigated. The experimental results show that, the transmittance and the resistivity decrease as the sputtering power increases from 30 to 90 W. When the substrate temperature increases from 25 to 150℃, the transmittance increases slightly whereas the resistivity decreases. As the work pressure increases from 0.4 to 2.0 Pa, the transmittance decreases and the resistivity increases. When the sputtering power, substrate temperature and work pressure are 30 W, 150℃, 0.4 Pa respectively, the ITO thin films exhibit good electrical and optical properties, with resistivity below 10^-4 Ωcm and the transmittance in the visible wave band beyond 80%. Therefore, the ITO thin films are suitable as transparent electrodes of solar cells.
基金the Key Programme of the Education Department of Hubei Province,China(2003A001,D200529002)
文摘Copper nitride thin films were deposited on glass substrates by reactive direct current (DC) magnetron sputtering at various N2-gas partial pressures and room temperature. Xray diffraction measurements showed that the films were composed of Cu3N crystallites and exhibited a preferential orientation of the [111] direction at a low nitrogen gas (N2) partial pressure. The film growth preferred the [111] and the [100] direction at a high N2 partial pressure. Such preferential film growth is interpreted as being due to the variation in the Copper (Cu) nitrification rate with the N2 pressure. The N2 partial pressure affects not only the crystal structure of the film but also the deposition rate and the resistivity of the Cu3N film. In our experiment, the deposition rate of Cu3N films was 18 nm/min to 30 nm/min and increased with the N2 partial pressure. The resistivity of the Cu3N films increased sharply with the increasing N2 partial pressure. At a low N2 partial pressure, the Cu3N films showed a metallic conduction mechanism through the Cu path, and at a high N2 partial pressure, the conductivity of the Cu3N films showed a semiconductor conduction mechanism.
基金supported by the Dalian Foundation for Development of Science and Technology (No.2006A13GX029)
文摘TiO2 films were deposited at room temperature by DC pulse magnetron sputtering system.The crystalline structures,morphological features and photocatalytic activity of TiO2 films were systematically investigated by X-ray diffraction(XRD),atomic force microscopy(AFM) and ultraviolet spectrophotometer,respectively.The results indicated that working pressure was the key deposition parameter in?uencing the TiO2 film phase composition at room temperature,which directly affected its photocatalytic activity.With increasing working pressure,the target self-bias decreases monotonously.Therefore,low temperature TiO2 phase(anatase) could be deposited with high working pressure.The anatase TiO2 films deposited with 1.4 Pa working pressure displayed the highest photocatalytic activity by the decomposition of Methyl Orange solution,which the degradation rate reached the maximum(35%) after irradiation by ultraviolet light for 1 h.
基金This work was supported by the National Natural Science Foundation of China(No,50376067)the Plan for Science&Technology Development of Guangzhou(2001-Z-117-01).
文摘TiO2 thin film has attracted considerable attention in recent years, due to its different refractive index and transparency with amorphous and different crysta ls in the visible and near-infrared wavelength region, high dielectric constant, wide band gap, high wear resistance and stability, etc, for which make it being used in many fields. This paper aims to investigate the optical characterizatio n of thin film TiO2 on silicon wafer. The TiO2 thin films were prepared by DC re active magnetron sputtering process from Ti target. The reflectivity of the film s was measured by UV-3101PC, and the index of refraction (n) and extinction coef ficient (k) were measured by n & k Analyzer 1200.
基金Funded by the Doctoral Fund of Southwest University of Science and Technology(Nos.19zx7131 and 18zx7132)the Applied Fundamental Research Projects of Science and Technology Department of Sichuan Province(No.2020YJ0333)+1 种基金the Science and Technology on Plasma Physics Laboratory:6142A04180405Science and Technology on Plasma Physics Laboratory:ZY2018-07。
文摘Porous Pt thin films were prepared on carbon papers by a single-step ultra-high dc magnetron sputtering method to obtain ideal electrodes for proton exchange membrane fuel cells.The platinum loading of the electrocatalyst layer is controlled at about 0.1 mg·cm^(-2).Structural characteristics and catalytic activities of the films were analyzed by scanning electron microscopy,atomic force microscopy,X-ray diffraction,cyclic voltammetry,and stress durability testing methods.The effect of treatment conditions of a substrate on the structural and performance characteristics of the catalytic films was shown as well.Films produced on acid-treated carbon papers at the argon pressure of 0.01 mbar possessed a homogeneous,highly developed surface along with a porous structure.Compared to Pt/TCPW(Toray carbon papers soaked in ultrapure water)electrodes,the film obtained on the acid-treated substrate had a larger electrochemical surface area(163.33 m^(2)·g^(-1))and exhibited better catalytic stability and durability due to a porous structure as a result of Pt particle accumulation.
基金the National Naturul Science Foundation of China for thefinancial support (Grant No.19974005).
文摘Cu films with thickness of about 500nm were deposited on glass substrateswithout heating by DC magnetron sputtering in pure Ar gas of 1.0Pa. The sputtering powers weremaintained at 390V X 0.27A, 430V X 0.70A and 450V X l.04A, and the corresponding deposition rates ofCu film reached 35nm/min, l04nm/min and 167nm/min. X-ray diffraction, scanning electron microscopyand atomic force microscopy were used to observe the structural characteristics of the films. Theresistance of the films was measured using four-point probe technique. The amount of larger grainsincreases and the resistivity of the films decreases evidently with an increase in sputtering power.It is considered that the increase in deposition rate with sputtering power mainly weakens theinfluence of residual gas atoms on the growing film, and increases substrate and gas temperatures,resulting in the increase in grain size and the decrease in resistivity of the Cu film.
基金the National Natural Science Foundation of China and External science and technology cooperation program of Jiangxi Province(Nos.11364032 and 20151BDH80030)。
文摘Single(200)-oriented TiN thin films were deposited on quartz substrate by direct current(DC) magnetron reactive sputtering process at a wide range of substrate temperature from 200 to 600 ℃.The effects of sputtering pressure and substrate temperature on the crystalline nature,morphology,electrical and optical properties of the deposited thin films were analyzed by X-ray diffraction(XRD),atomic force microscopy(AFM),four-point resistivity test system and ultraviolet visible near-infrared(UV-Vis-NIR) spectroscopy,respectively.The results show that single(200)-oriented TiN thin films can be obtained at a wide range of substrate temperature from 200 to 600 ℃ with the grain size increasing from 35.9 to 64.5 nm.The resistivity of the product is as low as95 μΩ·cm,and the value of the optical reflectance is above68 % in the near-infrared(NIR) range of 760-1500 nm.
基金supported by the National Natural Science Foundation of China (Nos.81171462 and 51062002)the Sichuan Youth Science & Technology Foundation for Distinguished Young Scholars (No.2012JQ0001)the Fundamental Research Funds for the Central Universities (Nos.SWJTU11CX078 and SWJTU12ZT08)
文摘CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and UV-visible spectrophotometer, respectively. The results showed that carbon-doped titanium monoxide films (C-TiO) with a carbon concentration of 5.8 at.% were obtained in an AffCO2 mixed atmosphere. However, carbon-doped futile and anatase (C-TiO2) with a carbon concentration of about 1.4 at.% were obtained in an Ar/CO2/O2 mixed atmosphere. The optical band gaps of C-TiO and C-TiO2 were about 2.6 and 2.9 eV, respectively. Both of them were narrower than that of pure TiO2 films. Films with narrowed optical band gap energy are promising in promoting their photo-catalytic activity.
基金funded the National Core Research Center(NCRC)Program through the National Research Foundation of Koreafunded by the Ministry of Education,Science and Technology(No.2012-0000-957)+1 种基金by the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy,Republic of Koreafunded by the Shenyang Science&Technology Plan Project for the Special of Tackling Key Problems of Industrial Science and Technology(No.F12-012-2-00)
文摘Nanocrystalline ZrB2 film and nanocomposite Zr-B-O-N films were prepared by non-reactive as well as re- active magnetron sputtering techniques, respectively. By means of X-ray diffraction analysis, electron probe microanalysis, X-ray photoelectron spectroscopy, and scanning electron microscopy, the influence of nitrogen flow ratio on the film microstructure and characteristics were investigated systematically, including the depo- sition rate, chemical compositions, phase constituents, grain size, chemical bonding, as well as cross-sectional morphologies. Meanwhile, the hardness and adhesion of above films were also evaluated by micro-indentation method and a scratch tester. With increasing the nitrogen flow ratio, the deposition rate of above films de- creased approximately linearly, whereas the contents of N and O in the films increased gradually and tended to saturation. Moreover, the film microstructure was also altered gradually from a fine columnar microstructure to a featureless glass-structure. As the nitrogen flow ratio was 11.7%, the Zr-B-O-N film possessed an typical nanocomposite structure and presented good mechanical properties. During the process of reactive sputtering of metal borides, the introduction of nitrogen can show a pronounced suppression of columnar grain growth and strong nanocomposite structure forming ability.
基金supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No.2009AA03Z428)
文摘Tungsten-doped indium oxide (IWO) thin films were deposited on glass substrate by DC reactive magnetron sputtering. The effects of sputtering power and growth temperature on the structure, surface morphology, optical and electrical properties of IWO thin films were investigated. The thickness and surface morphology of the films are both closely dependent on the sputtering power and the substrate temperature. The transparency of the films decreases with the increase of the sputtering power but is not seriously influenced by substrate temperature. All the IWO thin film samples have high transmittance in near-infrared spectral range. With either the sputtering power or the growth temperature increases, the resistivity of the film decreases at the beginning and increases after the optimum parameters. The as-deposited IWO films with minimum resistivity of 6.4 10 4 cm were obtained at a growth temperature of225 C and sputteringpower of 40 W, with carrier mobility of 33.0 cm 2 V 1 s 1 and carrier concentration of 2.8 10 20 cm 3 and the average transmittance of about 81% in near-infrared region and about 87% in visible region.
基金financially supported by the National Natural Science Foundation of China (No. 50902006)the National High Technology Development 863 Program of China (No. 2009AA03Z428)National Student Innovative Experiment Plan
文摘The In 2 O 3 : W (IWO) films with different W content were deposited on glass substrate using direct current sputtering method. The structure, surface morphology, and optical and electrical properties were investigated. Results showed that both the carrier concentration and carrier mobility were increased with the doping of W. The IWO film with the lowest resistivity of 1.0×10 3 cm, highest carrier mobilityof 43.7 cm 2 V 1 s 1 and carrier concentration of 1.4×10 20 cm 3 was obtained at the content of 2.8 wt.%. The average optical transmittance from 300 nm to 900 nm reached 87.6%.
文摘Several nc-TiN/a-TiB2 thin films comprised of nanocrystalline (nc-) TiN and amor phous (a-) TiB2 phases were deposited on Si(100) at room temperature by reactive unbalanced dc magnetron sputtering, followed by vacuum annealed at 400, 600, 80 0 and 1000℃ for 1h, respectively. Effects of B content on microstructure, mecha nical behaviors and thermal microstructure stability have been investigated by X -ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and nanoindentation measurements. The results indicated that B addition greatly affected both microstructure and mechanical behavior of nc-Ti N/a-TiB2 thin films. With increasing B content the grain size decreased. A maxim um hardness value of about 33GPa was obtained at B content of about 19at.%. The improved mechanical properties of nc-TiN/a-TiB2 films with the addition of B int o TiN were attributed to their densified microstructure with development of fine grain size. Only addition of sufficient B could restrain grain growth during an nealing. High B content resulted in high microstructure stability. The crystalli zation of amorphous matrix occurred at about 800℃, forming TiB or TiB2 crystall ite, depending on B content. Before that no change in bonding configuration was found.
基金financially supported by the National Natural Science Foundation of China(Nos.51801081 and 52171071)national funds through FCT of Portugal-Fundacao para a Ciencia e a Tecnologia,under a scientific contract of 2021.04115,CEMMPRE-ref.“UIDB/00285/2020”and LA/P/0112/2020 projects+2 种基金FEDER funds through the COMPETE program-Operational Program on Competitiveness Factorsnational funds through FCT-Foundation for Science and Technology,Outstanding University Young Teachers of“Qing Lan Project”of Jiangsu Province of China,Excellent Talents of“Shenlan Project”of Jiangsu University of Science and Technology of ChinaA part of this study was supported by the Directorate-General of Scientific Research and Technological Development(Algeria)。
文摘In the last decades,vanadium alloyed coatings have been introduced as potential candidates for self-lubrication due to their perfect tribological properties.In this work,the influence of V incorporation on the wear performance and oxidation resistance of TiSiN/CrN film coatings deposited by direct current(DC)reactive magnetron sputtering is investigated.The results show that vanadium incorporation significantly decreases the oxidation resistance of the coatings.In general,two layers are formed during the oxidation process:i)Ti(V)O_(2) on top,followed by a protective layer,which is subdivided into two layers,Cr_(2)O_(3) and Si-O.ii)The diffusion of V controls the oxidation of V-containing coatings.The addition of vanadium improves the wear resistance of coatings,and the wear rate decreases with increasing V content in the coatings;however,the friction coefficient is independent of the chemical composition of the coatings.The wear of the V-containing coatings is driven by polishing wear.