In previous papers,the authors presented various electromagnetic transient(EMT)results for multi-infeed configurations focusing on possible effects from failures in one link being transferred to others in terms of ind...In previous papers,the authors presented various electromagnetic transient(EMT)results for multi-infeed configurations focusing on possible effects from failures in one link being transferred to others in terms of induced commutation failures(CF),either during the fault events or after fault clearing in the recovery period.However,the AC system networks in these cases were represented by simplified equivalents.Many interesting conclusions arose from these publications without enabling a much-detailed analysis of overall system effects,which is only possible when the network is modeled in full detail.This paper aims at complementing and comparing simulation results on HVDC multi-infeed configurations using both dynamic stability and electromagnetic transient,while establishing some basic proposals for optimal use of both tools.It identifies the limitations from each type of study so that a comprehensive and useful analysis of HVDC multi-infeed systems can be obtained.展开更多
为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参...为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参与模拟排险实验并对其认知负荷及排险绩效进行量化,使用眼动轨迹匹配法判断被试的信息搜索模式,研究认知负荷的中介效应及中介机理。研究结果表明:不同信息搜索策略会显著影响任务绩效;认知负荷对该影响的中介效应高达89.66%,表明信息搜索策略主要通过影响认知负荷来间接作用于排险任务绩效,认知负荷越高,任务绩效越低;逻辑系统搜索策略能通过高效图式匹配减少认知资源消耗,显著抑制认知负荷增长,任务绩效表现最佳;空间系统搜索较难抑制认知负荷,任务绩效较差;随机搜索被试认知负荷显著高于其他组,绩效表现最差;此外,不同认知负荷水平下被试的信息搜索策略没有明显转变倾向。研究结果可为DCS控制人员的考核和培训提供理论支撑。展开更多
Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluat...Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.展开更多
The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is propo...The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is proposed in this paper.Several types of relationships to be coordinated and complemented are analyzed and formulated using quantitative indices.According to the graph theory,the HVDC partition is transformed into a graph-cut problem and solved via the spectral clustering algorithm.Finally,the proposed method is validated for a practical multi-HVDC grid,confirming its feasibility and effectiveness.展开更多
The Brazilian transmission system is facing challenging problems with the distance between its generation areas and consumer centers that will be partly solved by the use of HVDC point-to-point systems.In the near fut...The Brazilian transmission system is facing challenging problems with the distance between its generation areas and consumer centers that will be partly solved by the use of HVDC point-to-point systems.In the near future,the southeast subsystem will have a large amount of power injected through HVDC Systems in multiple points with relatively close electrical proximity.Therefore,the effects of a multi-infeed system are expected to influence the performance and operation of the network.Extensive studies and simulations will play an important role in determining the extension of the interactions among HVDC converters and determine if such interactions cause multiple commutation failures,thus disturbing the dynamic stability of the system.The use of CCC(Capacitor Commutated Converter)HVDC systems will also be assessed and is expected to diminish the need for a strong AC network(high short circuit level)and,therefore,mitigate multi-infeed interactions.The southeast subsystem of the Brazilian Power System currently has four LCC inverters,two of them belong to the Madeira power plant and the other two are from the Itaipu power plant.By the year 2024,four other HVDC systems will be arriving in the same region.This paper discusses the HVDC multi-infeed phenomena regarding the relevance of using synchronous machine models to represent important power plants and the application of mitigation methods regarding the 2020 network model,where six HVDC links will be present.展开更多
In multi-infeed HVDC system, the interactions and influences between DC systems AC systems are complex as the electrical distances among DC converter stations which are relatively short. Multi-infeed interaction facto...In multi-infeed HVDC system, the interactions and influences between DC systems AC systems are complex as the electrical distances among DC converter stations which are relatively short. Multi-infeed interaction factor (MIIF) can effectively reflect the interaction among DC systems. The paper theoretically analyzes the impact factors of MIIF like the electrical distances between two DC converter stations and the equivalent impedance of the receiving end AC system. By applying the Kirchhoff’s current law on the inverter AC bus, the paper deduces the analytical expressions for MIIF. From the expression, it is clear how the equivalent impedance of AC system and coupling impedance can affect MIIF. PSCAD simulations validate the effectiveness and the correctness of the proposed expression and some useful conclusions are drawn.展开更多
HVDC technology has been widely used in modern power system. On one hand, HVDC has the advantages of economy, high efficiency and strong controllability. While on the other hand, it makes the dynamic characteristics o...HVDC technology has been widely used in modern power system. On one hand, HVDC has the advantages of economy, high efficiency and strong controllability. While on the other hand, it makes the dynamic characteristics of the power system becoming more and more complex. That puts forward a new challenge to system stability and raises new questions for power system simulation. This paper focuses on the interaction between AC and DC systems, especially the problem of commutation failure caused by AC system fault. Based on the data of China Southern Power Grid, this paper calculates the fault regions that may cause commutation failure and calculates the system critical clearance time under different load models, analyzes the impacts of different load models on commutation failure and the stability of AC/DC hybrid system.展开更多
This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus volta...This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.展开更多
文摘In previous papers,the authors presented various electromagnetic transient(EMT)results for multi-infeed configurations focusing on possible effects from failures in one link being transferred to others in terms of induced commutation failures(CF),either during the fault events or after fault clearing in the recovery period.However,the AC system networks in these cases were represented by simplified equivalents.Many interesting conclusions arose from these publications without enabling a much-detailed analysis of overall system effects,which is only possible when the network is modeled in full detail.This paper aims at complementing and comparing simulation results on HVDC multi-infeed configurations using both dynamic stability and electromagnetic transient,while establishing some basic proposals for optimal use of both tools.It identifies the limitations from each type of study so that a comprehensive and useful analysis of HVDC multi-infeed systems can be obtained.
文摘为探究在集散式控制系统(distributed control system,DCS)危险排除过程中控制员不同信息搜索策略对排险任务绩效的影响及认知负荷的中介效应,基于虚拟现实技术、皮肤电采样和眼动追踪技术构建模拟DCS工控平台,招募20名相关专业被试参与模拟排险实验并对其认知负荷及排险绩效进行量化,使用眼动轨迹匹配法判断被试的信息搜索模式,研究认知负荷的中介效应及中介机理。研究结果表明:不同信息搜索策略会显著影响任务绩效;认知负荷对该影响的中介效应高达89.66%,表明信息搜索策略主要通过影响认知负荷来间接作用于排险任务绩效,认知负荷越高,任务绩效越低;逻辑系统搜索策略能通过高效图式匹配减少认知资源消耗,显著抑制认知负荷增长,任务绩效表现最佳;空间系统搜索较难抑制认知负荷,任务绩效较差;随机搜索被试认知负荷显著高于其他组,绩效表现最差;此外,不同认知负荷水平下被试的信息搜索策略没有明显转变倾向。研究结果可为DCS控制人员的考核和培训提供理论支撑。
基金supported by the Technology Project of the State Grid Corporation Headquarters Management(Contract No.5100-202158467A-0-0-00).
文摘Voltage source converter based high voltage direct current(VSC-HVDC)can participate in voltage regulation by flexible control to help maintain the voltage stability of the power grid.In order to quantitatively evaluate its influence on the voltage interaction between VSC-HVDC and line commutated converter based high voltage direct current(LCC-HVDC),this paper proposes a hybrid multi-infeed interaction factor(HMIIF)calculation method considering the voltage regulation control characteristics of VSC-HVDC.Firstly,for a hybrid multi-infeed high voltage direct current system,an additional equivalent operating admittance matrix is constructed to characterize HVDC equipment characteristics under small disturbance.Secondly,based on the characteristic curve between the reactive power and the voltage of a certain VSC-HVDC project,the additional equivalent operating admittance of VSC-HVDC is derived.The additional equivalent operating admittance matrix calculation method is proposed.Thirdly,the equivalent bus impedance matrix is obtained by modifying the alternating current(AC)system admittance matrix with the additional equivalent operating admittance matrix.On this basis,the HMIIF calculation method based on the equivalent bus impedance ratio is proposed.Finally,the effectiveness of the proposed method is verified in a hybrid dual-infeed high voltage direct current system constructed in Power Systems Computer Aided Design(PSCAD),and the influence of voltage regulation control on HMIIF is analyzed.
基金supported by the Science and Technology Project of State Grid Corporation of China:“Control Strategy Optimization Technology for Large-Scale Photovoltaic Power Generation on the Sending-end and Receiving-end of DC Power System”(4000-201934198A-0-0-00)
文摘The close proximity and the necessity of coordination between multiple high-voltage direct currents(HVDCs)raise the issue of grid partitioning in multi-infeed HVDC systems.A multi-objective partition strategy is proposed in this paper.Several types of relationships to be coordinated and complemented are analyzed and formulated using quantitative indices.According to the graph theory,the HVDC partition is transformed into a graph-cut problem and solved via the spectral clustering algorithm.Finally,the proposed method is validated for a practical multi-HVDC grid,confirming its feasibility and effectiveness.
基金This research was supported by ANEEL(Brazilian Energy Regulatory Agency)and the State Grid Brazilian Holding,as well as the University of Sao Paulo.
文摘The Brazilian transmission system is facing challenging problems with the distance between its generation areas and consumer centers that will be partly solved by the use of HVDC point-to-point systems.In the near future,the southeast subsystem will have a large amount of power injected through HVDC Systems in multiple points with relatively close electrical proximity.Therefore,the effects of a multi-infeed system are expected to influence the performance and operation of the network.Extensive studies and simulations will play an important role in determining the extension of the interactions among HVDC converters and determine if such interactions cause multiple commutation failures,thus disturbing the dynamic stability of the system.The use of CCC(Capacitor Commutated Converter)HVDC systems will also be assessed and is expected to diminish the need for a strong AC network(high short circuit level)and,therefore,mitigate multi-infeed interactions.The southeast subsystem of the Brazilian Power System currently has four LCC inverters,two of them belong to the Madeira power plant and the other two are from the Itaipu power plant.By the year 2024,four other HVDC systems will be arriving in the same region.This paper discusses the HVDC multi-infeed phenomena regarding the relevance of using synchronous machine models to represent important power plants and the application of mitigation methods regarding the 2020 network model,where six HVDC links will be present.
文摘In multi-infeed HVDC system, the interactions and influences between DC systems AC systems are complex as the electrical distances among DC converter stations which are relatively short. Multi-infeed interaction factor (MIIF) can effectively reflect the interaction among DC systems. The paper theoretically analyzes the impact factors of MIIF like the electrical distances between two DC converter stations and the equivalent impedance of the receiving end AC system. By applying the Kirchhoff’s current law on the inverter AC bus, the paper deduces the analytical expressions for MIIF. From the expression, it is clear how the equivalent impedance of AC system and coupling impedance can affect MIIF. PSCAD simulations validate the effectiveness and the correctness of the proposed expression and some useful conclusions are drawn.
文摘HVDC technology has been widely used in modern power system. On one hand, HVDC has the advantages of economy, high efficiency and strong controllability. While on the other hand, it makes the dynamic characteristics of the power system becoming more and more complex. That puts forward a new challenge to system stability and raises new questions for power system simulation. This paper focuses on the interaction between AC and DC systems, especially the problem of commutation failure caused by AC system fault. Based on the data of China Southern Power Grid, this paper calculates the fault regions that may cause commutation failure and calculates the system critical clearance time under different load models, analyzes the impacts of different load models on commutation failure and the stability of AC/DC hybrid system.
基金supported by the National Natural Science Foundation of China(Nos.51767017 and 51867015)the Basic Research and Innovation Group Project of Gansu(No.18JR3RA13)the Major Science and Technology Project of Gansu(No.19ZD2GA003).
文摘This paper deeply introduces a brand-new research method for the synchronous characteristics of DC microgrid bus voltage and an improved synchronous control strategy.This method mainly targets the problem of bus voltage oscillation caused by the bifurcation behavior of DC microgrid converters.Firstly,the article elaborately establishes a mathematical model of a single distributed power source with hierarchical control.On this basis,a smallworld network model that can better adapt to the topology structure of DC microgrids is further constructed.Then,a voltage synchronization analysis method based on the main stability function is proposed,and the synchronous characteristics of DC bus voltage are deeply studied by analyzing the size of the minimum non-zero eigenvalue.In view of the situation that the line coupling strength between distributed power sources is insufficient to achieve bus voltage synchronization,this paper innovatively proposes a new improved adaptive controller to effectively control voltage synchronization.And the convergence of the designed controller is strictly proved by using Lyapunov’s stability theorem.Finally,the effectiveness and feasibility of the designed controller in this paper are fully verified through detailed simulation experiments.After comparative analysis with the traditional adaptive controller,it is found that the newly designed controller can make the bus voltages of each distributed power source achieve synchronization more quickly,and is significantly superior to the traditional adaptive controller in terms of anti-interference performance.