A DC regulated power supply with numerical control based on single chip microcomputer (SCM) is designed. SCM is the main controller and output voltage o{ DC power supply can be set by keyboard. The analog voltage ca...A DC regulated power supply with numerical control based on single chip microcomputer (SCM) is designed. SCM is the main controller and output voltage o{ DC power supply can be set by keyboard. The analog voltage can be obtained through D/A converter (DAC0832) so that different voltages can be provided by operational amplifier. The output voltage varies from 0 V to 12 V with the incremental value of 0. 1 V. The actual output voltage is shown in the nixietube. This DC regulated power supply is characterized by simple structure and easy operation.展开更多
DC regulated power has play a decisive role status in the modem enterprise production and family life. With the development of science and technology, all kinds of computer simulation technology is increasingly rising...DC regulated power has play a decisive role status in the modem enterprise production and family life. With the development of science and technology, all kinds of computer simulation technology is increasingly rising, the paper simulate and compare common DC regulated power with adjustable DC regulated power by Altium Designer software, intuitively demonstrates the stabilizing effect of the circuit, and introduces the characteristics of adjustable DC regulated power. Using AD13 software simulate and design DC stabilized power supply circuit, calculated the main parameters of the circuit, simulated and analyzed the circuit working simulation process and the working state of the circuit, it can visually verify the results of the theoretical analysis, and get relevant conclusions.展开更多
To achieve the goal of carbon neutrality,renewable energy integration through a voltage source converter based multi-terminal direct current(VSC-MTDC)system has been identified as a promising solution.To tackle the si...To achieve the goal of carbon neutrality,renewable energy integration through a voltage source converter based multi-terminal direct current(VSC-MTDC)system has been identified as a promising solution.To tackle the significant DC voltage over-limit problem in a VSC-MTDC system during disturbances,this paper proposes a mode-switching strategy of droop control considering maximum DC voltage regulation capability.The close relationship between node injection powers and node DC voltages in the MTDC system is elaborated,and the most effective regulation approach of local injection power for limiting DC voltage deviation is presented.The operating point trajectories of different droop control explains that the DC voltage deviation can be minimized by fully utilizing the capacity of converters.Therefore,the mode-switching strategy with the maximum DC voltage regulation capability is realized by the switching between the voltage droop control and the constant maximum power control.In addition,a mode recovery process and a smooth switching method are developed to make converters regain the capability of maintaining DC voltage and reduce power fluctuation during mode switching,respectively.Furthermore,three cases are investigated to verify the effectiveness of the proposed mode-switching strategy.Compared with simulation results of the conventional droop control and the DC voltage deviation-dependent droop control,better performance of transient and steady-state DC voltage deviation is achieved through the proposed strategy.展开更多
文摘A DC regulated power supply with numerical control based on single chip microcomputer (SCM) is designed. SCM is the main controller and output voltage o{ DC power supply can be set by keyboard. The analog voltage can be obtained through D/A converter (DAC0832) so that different voltages can be provided by operational amplifier. The output voltage varies from 0 V to 12 V with the incremental value of 0. 1 V. The actual output voltage is shown in the nixietube. This DC regulated power supply is characterized by simple structure and easy operation.
文摘DC regulated power has play a decisive role status in the modem enterprise production and family life. With the development of science and technology, all kinds of computer simulation technology is increasingly rising, the paper simulate and compare common DC regulated power with adjustable DC regulated power by Altium Designer software, intuitively demonstrates the stabilizing effect of the circuit, and introduces the characteristics of adjustable DC regulated power. Using AD13 software simulate and design DC stabilized power supply circuit, calculated the main parameters of the circuit, simulated and analyzed the circuit working simulation process and the working state of the circuit, it can visually verify the results of the theoretical analysis, and get relevant conclusions.
基金supported in part by the National Natural Science Foundation of China under Grant 52377119 and U22B20109.
文摘To achieve the goal of carbon neutrality,renewable energy integration through a voltage source converter based multi-terminal direct current(VSC-MTDC)system has been identified as a promising solution.To tackle the significant DC voltage over-limit problem in a VSC-MTDC system during disturbances,this paper proposes a mode-switching strategy of droop control considering maximum DC voltage regulation capability.The close relationship between node injection powers and node DC voltages in the MTDC system is elaborated,and the most effective regulation approach of local injection power for limiting DC voltage deviation is presented.The operating point trajectories of different droop control explains that the DC voltage deviation can be minimized by fully utilizing the capacity of converters.Therefore,the mode-switching strategy with the maximum DC voltage regulation capability is realized by the switching between the voltage droop control and the constant maximum power control.In addition,a mode recovery process and a smooth switching method are developed to make converters regain the capability of maintaining DC voltage and reduce power fluctuation during mode switching,respectively.Furthermore,three cases are investigated to verify the effectiveness of the proposed mode-switching strategy.Compared with simulation results of the conventional droop control and the DC voltage deviation-dependent droop control,better performance of transient and steady-state DC voltage deviation is achieved through the proposed strategy.