IEC TS 60076-23,the first IEC standard on DC bias suppression devices approved by IEC/TC 14 in November 2017,is expected to be published and put into force in 2018,overcoming the lack of such IEC standards in the fiel...IEC TS 60076-23,the first IEC standard on DC bias suppression devices approved by IEC/TC 14 in November 2017,is expected to be published and put into force in 2018,overcoming the lack of such IEC standards in the field.The Shanghai branch of SGCC has carried out studies and researches on DC bias effect for more than 10 years,and it has led the standard development based on its R&D and the application of DC bias suppression devices in China.展开更多
A new Dark Current Suppression (DCS) CMOS readout circuits for large format Quantum-Well-Infrared Photo-detector (QWIP) Focal-Plane-Array (FPA) with novel Correlated-Double-Sampling (CDS) structure based on dynamic so...A new Dark Current Suppression (DCS) CMOS readout circuits for large format Quantum-Well-Infrared Photo-detector (QWIP) Focal-Plane-Array (FPA) with novel Correlated-Double-Sampling (CDS) structure based on dynamic source-follower are proposed, which can overcome the drawbacks of the present techniques, such as sensitive to the non-uniformity of the QWIP materials, poor readout noise features, low frame frequency, limited injection efficiency and dynamic range, etc. The dummy is adopted to realize dark current suppression, while the cascode current mirror (with current ratio of 1:10) can increase charge sensitivity and reduce integration time. Through the novel CDS structure, the output waveform is boxcar, and the frame frequency is increased. Simulation results demonstrate that, in high background sense, the proposed DCS circuit can suppress the dark current, achieve good readout performance, such as low power consumption, high charge sensitivity, high resolution, large dynamic range, and insensitive to the non-uniformity of the QWIP materials.展开更多
A three op-amps instrumentation amplifier(I.A) is one of the most important segments in the electroencephalographic(EEG) acquisition system, which is used to suppress the interference of the common mode noise. However...A three op-amps instrumentation amplifier(I.A) is one of the most important segments in the electroencephalographic(EEG) acquisition system, which is used to suppress the interference of the common mode noise. However, electrode and op-amps offset voltages could saturate the I.A, so the ability of noise suppression for the I.A might be limited. To compensate for the electrode and op-amps offset voltages and improve the property of the I.A, the optical-isolated technology was used in the present study.This paper described the theory of DC suppression and employed the simulation software(i.e. Multisim10.0.) to demonstrate the constant<urrent source of the optical-isolated device comprised of general-purpose optocouplers.Using this technology we designed and tested an EEG acquisition system.During the test,a constant current was generated by the optocoupler(the MOTOROLA 4N35)when DC offset voltages from 0 to 15 mV were imposed on the input signal in the EEG acquisition system and the value of load resistance in the optical--isolated device was from 3 k to 15 kom.We also found that the IA with the gain of 857 could effectively reject a DC input rangeof±15mV.And An EEG signal is obtained by the EEG acquisition system,and a CMRR of 104.5 dB was achieved without trimmings.展开更多
文摘IEC TS 60076-23,the first IEC standard on DC bias suppression devices approved by IEC/TC 14 in November 2017,is expected to be published and put into force in 2018,overcoming the lack of such IEC standards in the field.The Shanghai branch of SGCC has carried out studies and researches on DC bias effect for more than 10 years,and it has led the standard development based on its R&D and the application of DC bias suppression devices in China.
基金Supported by the National Natural Science Foundation of China(No.60077025)
文摘A new Dark Current Suppression (DCS) CMOS readout circuits for large format Quantum-Well-Infrared Photo-detector (QWIP) Focal-Plane-Array (FPA) with novel Correlated-Double-Sampling (CDS) structure based on dynamic source-follower are proposed, which can overcome the drawbacks of the present techniques, such as sensitive to the non-uniformity of the QWIP materials, poor readout noise features, low frame frequency, limited injection efficiency and dynamic range, etc. The dummy is adopted to realize dark current suppression, while the cascode current mirror (with current ratio of 1:10) can increase charge sensitivity and reduce integration time. Through the novel CDS structure, the output waveform is boxcar, and the frame frequency is increased. Simulation results demonstrate that, in high background sense, the proposed DCS circuit can suppress the dark current, achieve good readout performance, such as low power consumption, high charge sensitivity, high resolution, large dynamic range, and insensitive to the non-uniformity of the QWIP materials.
文摘A three op-amps instrumentation amplifier(I.A) is one of the most important segments in the electroencephalographic(EEG) acquisition system, which is used to suppress the interference of the common mode noise. However, electrode and op-amps offset voltages could saturate the I.A, so the ability of noise suppression for the I.A might be limited. To compensate for the electrode and op-amps offset voltages and improve the property of the I.A, the optical-isolated technology was used in the present study.This paper described the theory of DC suppression and employed the simulation software(i.e. Multisim10.0.) to demonstrate the constant<urrent source of the optical-isolated device comprised of general-purpose optocouplers.Using this technology we designed and tested an EEG acquisition system.During the test,a constant current was generated by the optocoupler(the MOTOROLA 4N35)when DC offset voltages from 0 to 15 mV were imposed on the input signal in the EEG acquisition system and the value of load resistance in the optical--isolated device was from 3 k to 15 kom.We also found that the IA with the gain of 857 could effectively reject a DC input rangeof±15mV.And An EEG signal is obtained by the EEG acquisition system,and a CMRR of 104.5 dB was achieved without trimmings.