The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the...The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.展开更多
A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to...A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.展开更多
In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method we...In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method were digital potentiometer MAXIM 5455 and linear photoelectric coupling LOC110,and application programs were compiled using Visual Basic which was graphical compiling language,furthermore the communication between exterior and computer was carried out by ICP7044D module,in consequence the output value of high voltage DC power supply could be regulated with computer.The measured results showed that this method could accurately,conveniently and rapidly regulate the output value of high voltage DC power supply.展开更多
The UPS (uninterruptible power supplies) are essential power infrastructure components of systems designed for critical application, including data centers. High availability achievement is a very important factor r...The UPS (uninterruptible power supplies) are essential power infrastructure components of systems designed for critical application, including data centers. High availability achievement is a very important factor related to UPS performance, consequently to proper critical application functionality. Generally, UPS have a limited input voltage window, referring to the nominal input voltage value. Goal of this paper is to prove larger voltage window, without affecting normal UPS operation. Larger window will result on less commutation, backup and normal mode reduction, and consequently duty time of batteries reduction, too. Thus, under these conditions, it is to be expected availability improvement. The stabilizing node model, applied at UPS's control part through this paper is presented. UPS's behavior with an implemented stabilizing node is observed at few sites. In order to analyze and conclude about UPS's performance under these technical conditions, simulation results are further presented.展开更多
当前,国内电信网络的运行速度较快,通信机房的建立数量持续增加,各类通信技术的应用越来越广泛。其中,通信电源是保持通信运行质量的重要组成部分,相应获得了技术更新。电源系统作为数据中心项目较为关键的技术,能够维持通信设施的运行...当前,国内电信网络的运行速度较快,通信机房的建立数量持续增加,各类通信技术的应用越来越广泛。其中,通信电源是保持通信运行质量的重要组成部分,相应获得了技术更新。电源系统作为数据中心项目较为关键的技术,能够维持通信设施的运行秩序,防止出现信息交流问题。目前,数据中心的供电选择以高压直流输电(High Voltage Direct Current,HVDC)和不间断电源(Uninterruptible Power Supply,UPS)技术为主。以数据中心为研究侧重点,分别介绍了2种电源的运行理念,对比了2个电源系统的运行情况,探索了2种电源系统带来的供电启示。展开更多
对于广播电视制播工程项目,为确保直播内容安全播出和内容编辑的时效性,与直播相关的系统和内容编辑系统的核心设备需要接入不间断电源(Uninterruptible Power Supply,UPS)供电回路。因此,在供配电系统设计过程中,如何选择合适的UPS电...对于广播电视制播工程项目,为确保直播内容安全播出和内容编辑的时效性,与直播相关的系统和内容编辑系统的核心设备需要接入不间断电源(Uninterruptible Power Supply,UPS)供电回路。因此,在供配电系统设计过程中,如何选择合适的UPS电源设备技术架构成为一个关键问题。主要探讨了广播电视制播工程项目中UPS电源设备的选用,对UPS高频机和UPS工频机进行了比较分析,进而给出了广播电视制播工程中UPS电源设备的选用策略。展开更多
随着5G、物联网等技术的普及和应用,边缘数据中心(Data Center,DC)的需求将不断增长,未来,边缘DC将向小型化、智能化、绿色化的方向发展。一体化电力模块凭借其部署周期短、占地面积小、高效省电、智能管理以及运行安全等优势,将成为边...随着5G、物联网等技术的普及和应用,边缘数据中心(Data Center,DC)的需求将不断增长,未来,边缘DC将向小型化、智能化、绿色化的方向发展。一体化电力模块凭借其部署周期短、占地面积小、高效省电、智能管理以及运行安全等优势,将成为边缘DC供配电系统的建设可行方案之一。对一体化电力模块进行介绍,同时以某边缘DC实际工程项目设计为例,对边缘DC一体化电力模块设计方案和高低压柜+不间断电源(Uninterruptible Power Supply,UPS)设计方案进行对比分析,为相关领域的研究人员和实践者提供参考。展开更多
以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽...以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽范围的输入电压转换为稳定电压,保证了后级半桥LLC谐振拓扑的高效率运行。通过搭建实验平台并进行相关实验,结果验证了所提DC-DC变换器的可行性和正确性。展开更多
不间断电源(Uninterruptible Power Supply,UPS)作为电力保障系统的重要组成部分,在现代电力系统中扮演着至关重要的角色。然而,由于UPS具有复杂的电子电路结构,在实际运行中常常面临各种故障问题,不仅影响系统的可靠性和稳定性,而且可...不间断电源(Uninterruptible Power Supply,UPS)作为电力保障系统的重要组成部分,在现代电力系统中扮演着至关重要的角色。然而,由于UPS具有复杂的电子电路结构,在实际运行中常常面临各种故障问题,不仅影响系统的可靠性和稳定性,而且可能导致重大的经济损失和安全风险。因此,深入分析UPS故障,并提出有效的解决方案具有重要意义。文章通过研究基于电子电路原理的UPS故障分析与解决方案,梳理相关理论和实践经验,为UPS故障诊断与维修提供参考与指导。展开更多
广播电视发射的政策性、技术性及专业性较强,对于广播电视系统安全播出任务的要求日益严格,对发射台机房电源保障能力的要求也愈发严格。由于发射台机房停播故障70%以上源于供电系统,文章设计了智能一体化不间断电源(Uninterruptible Po...广播电视发射的政策性、技术性及专业性较强,对于广播电视系统安全播出任务的要求日益严格,对发射台机房电源保障能力的要求也愈发严格。由于发射台机房停播故障70%以上源于供电系统,文章设计了智能一体化不间断电源(Uninterruptible Power Supply,UPS)系统方案,旨在避免广播电视发射台电源故障导致的停播事故,实现供配电系统零停播的要求和规范化、标准化、智慧化的用电目标。展开更多
文摘The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.
文摘A novel operation control method for relay protection in flexible DC distribution networks with distributed power supply is proposed to address the issue of inaccurate fault location during relay protection,leading to poor performance.The method combines a fault-tolerant fault location method based on long-term and short-term memory networks to accurately locate the fault section.Then,an operation control method for relay protection based on adaptive weight and whale optimization algorithm(WOA)is used to construct an objective function considering the shortest relay protection action time and the smallest impulse current.The adaptive weight and WOA are employed to obtain the optimal strategy for relay protection operation control,reducing the action time and impulse current.Experimental results demonstrate the effectiveness of the proposed method in accurately locating faults and improving relay protection performance.The longest operation time is reduced by 4.7023 s,and the maximum impulse current is limited to 0.3 A,effectively controlling the impact of large impulse currents and enhancing control efficiency.
基金Project Supported by National Natural Science Foundation of China(50637020).
文摘In order to solve the disadvantages caused by mechanical slide rheostat that has big errors and low precision,a novel voltage regulation method for high voltage DC power supply was introduced.The key of this method were digital potentiometer MAXIM 5455 and linear photoelectric coupling LOC110,and application programs were compiled using Visual Basic which was graphical compiling language,furthermore the communication between exterior and computer was carried out by ICP7044D module,in consequence the output value of high voltage DC power supply could be regulated with computer.The measured results showed that this method could accurately,conveniently and rapidly regulate the output value of high voltage DC power supply.
文摘The UPS (uninterruptible power supplies) are essential power infrastructure components of systems designed for critical application, including data centers. High availability achievement is a very important factor related to UPS performance, consequently to proper critical application functionality. Generally, UPS have a limited input voltage window, referring to the nominal input voltage value. Goal of this paper is to prove larger voltage window, without affecting normal UPS operation. Larger window will result on less commutation, backup and normal mode reduction, and consequently duty time of batteries reduction, too. Thus, under these conditions, it is to be expected availability improvement. The stabilizing node model, applied at UPS's control part through this paper is presented. UPS's behavior with an implemented stabilizing node is observed at few sites. In order to analyze and conclude about UPS's performance under these technical conditions, simulation results are further presented.
文摘当前,国内电信网络的运行速度较快,通信机房的建立数量持续增加,各类通信技术的应用越来越广泛。其中,通信电源是保持通信运行质量的重要组成部分,相应获得了技术更新。电源系统作为数据中心项目较为关键的技术,能够维持通信设施的运行秩序,防止出现信息交流问题。目前,数据中心的供电选择以高压直流输电(High Voltage Direct Current,HVDC)和不间断电源(Uninterruptible Power Supply,UPS)技术为主。以数据中心为研究侧重点,分别介绍了2种电源的运行理念,对比了2个电源系统的运行情况,探索了2种电源系统带来的供电启示。
文摘对于广播电视制播工程项目,为确保直播内容安全播出和内容编辑的时效性,与直播相关的系统和内容编辑系统的核心设备需要接入不间断电源(Uninterruptible Power Supply,UPS)供电回路。因此,在供配电系统设计过程中,如何选择合适的UPS电源设备技术架构成为一个关键问题。主要探讨了广播电视制播工程项目中UPS电源设备的选用,对UPS高频机和UPS工频机进行了比较分析,进而给出了广播电视制播工程中UPS电源设备的选用策略。
文摘随着5G、物联网等技术的普及和应用,边缘数据中心(Data Center,DC)的需求将不断增长,未来,边缘DC将向小型化、智能化、绿色化的方向发展。一体化电力模块凭借其部署周期短、占地面积小、高效省电、智能管理以及运行安全等优势,将成为边缘DC供配电系统的建设可行方案之一。对一体化电力模块进行介绍,同时以某边缘DC实际工程项目设计为例,对边缘DC一体化电力模块设计方案和高低压柜+不间断电源(Uninterruptible Power Supply,UPS)设计方案进行对比分析,为相关领域的研究人员和实践者提供参考。
文摘以应用于车载辅助电源模块APM(auxiliary power module)的DC-DC变换器设计为研究对象,提出1种由三电平升压型TL-Boost(three-level Boost)拓扑和半桥LLC谐振拓扑构成的两级式DC-DC变换器拓扑结构,分析其工作原理。前级TL-Boost拓扑将宽范围的输入电压转换为稳定电压,保证了后级半桥LLC谐振拓扑的高效率运行。通过搭建实验平台并进行相关实验,结果验证了所提DC-DC变换器的可行性和正确性。
文摘不间断电源(Uninterruptible Power Supply,UPS)作为电力保障系统的重要组成部分,在现代电力系统中扮演着至关重要的角色。然而,由于UPS具有复杂的电子电路结构,在实际运行中常常面临各种故障问题,不仅影响系统的可靠性和稳定性,而且可能导致重大的经济损失和安全风险。因此,深入分析UPS故障,并提出有效的解决方案具有重要意义。文章通过研究基于电子电路原理的UPS故障分析与解决方案,梳理相关理论和实践经验,为UPS故障诊断与维修提供参考与指导。
文摘广播电视发射的政策性、技术性及专业性较强,对于广播电视系统安全播出任务的要求日益严格,对发射台机房电源保障能力的要求也愈发严格。由于发射台机房停播故障70%以上源于供电系统,文章设计了智能一体化不间断电源(Uninterruptible Power Supply,UPS)系统方案,旨在避免广播电视发射台电源故障导致的停播事故,实现供配电系统零停播的要求和规范化、标准化、智慧化的用电目标。