The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the...The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.展开更多
Considering the droplet coalescence, the motion of a group of dispersed droplets in W/O emulsion in a DC electric field is simulated. The simulation demonstrates the evolutions of droplet number, size as well as its d...Considering the droplet coalescence, the motion of a group of dispersed droplets in W/O emulsion in a DC electric field is simulated. The simulation demonstrates the evolutions of droplet number, size as well as its distribution,local concentration distribution and droplet size-velocity relation with the applied time of electric field. The simulated average droplet size is roughly consistent with the experimental value. The simulated variation of droplet number with time under several applied voltages shows that increasing voltage is more effective for raising the rate of droplet coalescence than extending exerting time. However, with the further raise of applied voltage, the improvement in droplet coalescence rate becomes less significant. The evolution of simulated droplet size–velocity relationship with time shows that the inter-droplet electric repulsion force is very strong due to larger electric charge on the droplet under higher applied voltage, so that the magnitude and the direction of droplet velocity become more random, which looks helpful to droplet coalescence.展开更多
Forward modeling is the basis of inversion imaging and quantitative interpretation for DC resistivity exploration.Currently,a numerical model of the DC resistivity method must be finely divided to obtain a highly accu...Forward modeling is the basis of inversion imaging and quantitative interpretation for DC resistivity exploration.Currently,a numerical model of the DC resistivity method must be finely divided to obtain a highly accurate solution under complex conditions,resulting in a long calculation time and large storage.Therefore,we propose a 3D numerical simulation method in a mixed space-wavenumber domain to overcome this challenge.The partial differential equation about abnormal potential is transformed into many independent ordinary differential equations with different wavenumbers using a 2D Fourier transform along the x axis and y axis direction.In this way,a large-scale 3D numerical simulation problem is decomposed into several 1D numerical simulation problems,which significantly reduces the computational and storage requirements.In addition,these ordinary 1D differential equations with different wavenumbers are independent of each other and high parallelelism of the algorithm.They are solved using a finite-element algorithm combined with a chasing method,and the obtained solution is modified using a contraction operator.In this method,the vertical direction is reserved as the spatial domain,then grid size can be determined flexibly based on the underground current density distribution,which considers the solution accuracy and calculation efficiency.In addition,for the first time,we use the contraction operator in the integral equation method to iterate the algorithm.The algorithm takes advantage of the high efficiency of the standard Fourier transform and chasing method,as well as the fast convergence of the contraction operator.We verified the accuracy of the algorithm and the convergence of the contraction operator.Compared with a volume integral method and goal-oriented adaptive finite-element method,the proposed algorithm has lower memory requirements and high computational efficiency,making it suitable for calculating a model with large-scale nodes.Moreover,different examples are used to verify the high adaptability and parallelism of the proposed algorithm.The findings show that the 3D numerical simulation method of DC resistivity method in a mixed space-wavenumber domain is highly efficient,precise,and parallel.展开更多
文摘The superconducting tokamak HT-7U [1] has been designed by the Institute of Plasma Physics since 1998 and will be set up before 2003. The 1.2 MW /2.45 GHz HT-7U LHCD (Lower hybrid current drive) system which being the most efficient non-induction device can heat the plasma and drive the plasma current has been efficiently in operation 'owl and a particular design of the 2.8 MW/-35 kV high-voltage DC power supply has been already completed and will apply to the klystron of LHCD on HT-7 and the future HT-7U, and the project of the power supply has been examined and approved professionally by an authorized group of high-level specialist in the institute of Plasma Physics. The detailed design of the power supply and the simulation results are referred in the paper.
基金Supported by the Special Research Project of Fujian Province(JK2012027)the Natural Science Foundation of Fujian Province(2014J01201)
文摘Considering the droplet coalescence, the motion of a group of dispersed droplets in W/O emulsion in a DC electric field is simulated. The simulation demonstrates the evolutions of droplet number, size as well as its distribution,local concentration distribution and droplet size-velocity relation with the applied time of electric field. The simulated average droplet size is roughly consistent with the experimental value. The simulated variation of droplet number with time under several applied voltages shows that increasing voltage is more effective for raising the rate of droplet coalescence than extending exerting time. However, with the further raise of applied voltage, the improvement in droplet coalescence rate becomes less significant. The evolution of simulated droplet size–velocity relationship with time shows that the inter-droplet electric repulsion force is very strong due to larger electric charge on the droplet under higher applied voltage, so that the magnitude and the direction of droplet velocity become more random, which looks helpful to droplet coalescence.
文摘Forward modeling is the basis of inversion imaging and quantitative interpretation for DC resistivity exploration.Currently,a numerical model of the DC resistivity method must be finely divided to obtain a highly accurate solution under complex conditions,resulting in a long calculation time and large storage.Therefore,we propose a 3D numerical simulation method in a mixed space-wavenumber domain to overcome this challenge.The partial differential equation about abnormal potential is transformed into many independent ordinary differential equations with different wavenumbers using a 2D Fourier transform along the x axis and y axis direction.In this way,a large-scale 3D numerical simulation problem is decomposed into several 1D numerical simulation problems,which significantly reduces the computational and storage requirements.In addition,these ordinary 1D differential equations with different wavenumbers are independent of each other and high parallelelism of the algorithm.They are solved using a finite-element algorithm combined with a chasing method,and the obtained solution is modified using a contraction operator.In this method,the vertical direction is reserved as the spatial domain,then grid size can be determined flexibly based on the underground current density distribution,which considers the solution accuracy and calculation efficiency.In addition,for the first time,we use the contraction operator in the integral equation method to iterate the algorithm.The algorithm takes advantage of the high efficiency of the standard Fourier transform and chasing method,as well as the fast convergence of the contraction operator.We verified the accuracy of the algorithm and the convergence of the contraction operator.Compared with a volume integral method and goal-oriented adaptive finite-element method,the proposed algorithm has lower memory requirements and high computational efficiency,making it suitable for calculating a model with large-scale nodes.Moreover,different examples are used to verify the high adaptability and parallelism of the proposed algorithm.The findings show that the 3D numerical simulation method of DC resistivity method in a mixed space-wavenumber domain is highly efficient,precise,and parallel.