针对风洞试验模型系统辨识不准确的问题,利用自适应LMS(least mean square)滤波器模型对跨声速风洞模型进行系统辨识。由于实测信号中存在多模态耦合,为了提高系统辨识精准度,首先对输入输出信号作了FRF(frequency response analysis)...针对风洞试验模型系统辨识不准确的问题,利用自适应LMS(least mean square)滤波器模型对跨声速风洞模型进行系统辨识。由于实测信号中存在多模态耦合,为了提高系统辨识精准度,首先对输入输出信号作了FRF(frequency response analysis)分析得到试验模型俯仰方向前两阶模态,其次利用快速Fourier变换进行模态解耦,接着利用自适应LMS滤波器模型、传递函数模型、多项式模型对俯仰方向单模态进行系统辨识,最后得到了基于自适应LMS滤波器模型的俯仰方向一阶、二阶模态滤波器系数。通过对比不同数学模型的输出与输入之间的相关系数和均方误差及辨识结果,表明自适应LMS滤波器模型具有更高的系统辨识精准度和更简洁的数学模型结构。为后续风洞试验模型振动主动控制计算法的设计提供有力支撑。展开更多
Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple fre...Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.展开更多
A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (...A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.展开更多
Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation ...Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation of sparsity contained in underwater acoustic channels provides a potential solution to improve the performance of underwater acoustic channel estimation. Compared with the classic 10 and 11 norm constraint LMS algorithms, the p-norm-like (Ip) constraint LMS algorithm proposed in our previous investigation exhibits better sparsity exploitation performance at the presence of channel variations, as it enables the adaptability to the sparseness by tuning of p parameter. However, the decimal exponential calculation associated with the p-norm-like constraint LMS algorithm poses considerable limitations in practical application. In this paper, a simplified variant of the p-norm-like constraint LMS was proposed with the employment of Newton iteration m to approximate the decimal exponential calculation. Num simulations and the experimental results obtained in physical shallow water channels demonstrate the effectiveness of the proposed method compared to traditional norm constraint LMS algorithms.展开更多
文摘针对风洞试验模型系统辨识不准确的问题,利用自适应LMS(least mean square)滤波器模型对跨声速风洞模型进行系统辨识。由于实测信号中存在多模态耦合,为了提高系统辨识精准度,首先对输入输出信号作了FRF(frequency response analysis)分析得到试验模型俯仰方向前两阶模态,其次利用快速Fourier变换进行模态解耦,接着利用自适应LMS滤波器模型、传递函数模型、多项式模型对俯仰方向单模态进行系统辨识,最后得到了基于自适应LMS滤波器模型的俯仰方向一阶、二阶模态滤波器系数。通过对比不同数学模型的输出与输入之间的相关系数和均方误差及辨识结果,表明自适应LMS滤波器模型具有更高的系统辨识精准度和更简洁的数学模型结构。为后续风洞试验模型振动主动控制计算法的设计提供有力支撑。
基金Program for New Century Excellent Talents in Universities Under Grant No.NCET-04-0325
文摘Random vibration control is aimed at reproducing the power spectral density (PSD) at specified control points. The classical frequency-spectrum equalization algorithm needs to compute the average of the multiple frequency response functions (FRFs), which lengthens the control loop time in the equalization process. Likewise, the feedback control algorithm has a very slow convergence rate due to the small value of the feedback gain parameter to ensure stability of the system. To overcome these limitations, an adaptive inverse control of random vibrations based on the filtered-X least mean-square (LMS) algorithm is proposed. Furthermore, according to the description and iteration characteristics of random vibration tests in the frequency domain, the frequency domain LMS algorithm is adopted to refine the inverse characteristics of the FRF instead of the traditional time domain LMS algorithm. This inverse characteristic, which is called the impedance function of the system under control, is used to update the drive PSD directly. The test results indicated that in addition to successfully avoiding the instability problem that occurs during the iteration process, the adaptive control strategy minimizes the amount of time needed to obtain a short control loop and achieve equalization.
基金Project supported by the IRPA Secretariat, Ministry of Science,Technology and Environment of Malaysia (No. 04-02-02-0029) andthe Zamalah Scheme
文摘A Matrix Inversion Normalized Least Mean Square (MI-NLMS) adaptive beamforming algorithm was developed for smart antenna application. The MI-NLMS which combined the individual good aspects of Sample Matrix Inversion (SMI) and the Normalized Least Mean Square (NLMS) algorithms is described. Simulation results showed that the less complexity MI-NLMS yields 15 dB improvements in interference suppression and 5 dB gain enhancement over LMS algorithm, converges from the initial iteration and achieves 24% BER improvements at cochannel interference equal to 5. For the case of 4-element uniform linear array antenna, MI-NLMS achieved 76% BER reduction over LMS algorithm.
基金Supported by the National Natural Science Foundation of China (No.11274259) and the Specialized Research Foundation for the Doctoral Program of Higher Education of China (No.20120121110030).
文摘Underwater acoustic channels are recognized for being one of the most difficult propagation media due to considerable difficulties such as: multipath, ambient noise, time-frequency selective fading. The exploitation of sparsity contained in underwater acoustic channels provides a potential solution to improve the performance of underwater acoustic channel estimation. Compared with the classic 10 and 11 norm constraint LMS algorithms, the p-norm-like (Ip) constraint LMS algorithm proposed in our previous investigation exhibits better sparsity exploitation performance at the presence of channel variations, as it enables the adaptability to the sparseness by tuning of p parameter. However, the decimal exponential calculation associated with the p-norm-like constraint LMS algorithm poses considerable limitations in practical application. In this paper, a simplified variant of the p-norm-like constraint LMS was proposed with the employment of Newton iteration m to approximate the decimal exponential calculation. Num simulations and the experimental results obtained in physical shallow water channels demonstrate the effectiveness of the proposed method compared to traditional norm constraint LMS algorithms.