针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛...针对经典盲均衡算法收敛速度较慢和稳态误差较大的问题,提出了一种基于变步长恒模算法(Constant Modulus Algorithm, CMA)和判决引导的最小均方(Decision Directed Least Mean Square, DD-LMS)算法的双模式切换盲均衡算法。在算法收敛初期采用CMA算法,以确保算法可以较快收敛。在收敛之后切换至DD-LMS算法,以进一步降低稳态误差。通过设定阈值来切换算法,取相邻多次迭代误差的平均值作为算法的切换值,以确保算法切换时机的合理性。另外,引入Softsign变步长函数并加入3个参数对该函数进行改进,使得Softsign变步长函数可以依据不同信道环境设定最佳参数,同时提高算法的收敛速度。仿真结果表明,在卫星通用信道条件下,所提算法的收敛迭代次数约为1 000次,稳态误差为-12 dB,在信噪比为15 dB时,误码率为1×10~(-6)。与相关算法对比,所提算法的收敛速度较高,误码率和稳态误差较低。展开更多
Rapid and timely testing is essential to minimize the COVID-19 spread. Decision makers and policy planners need to determine the equal distribution and accessibility of testing sites. This study mainly examines the sp...Rapid and timely testing is essential to minimize the COVID-19 spread. Decision makers and policy planners need to determine the equal distribution and accessibility of testing sites. This study mainly examines the spatial equality of COVID-19 testing sites that maintain a zero COVID policy in Guangzhou City. The study has identified the spatial disparities of COVID testing sites, characteristics of testing locations, and accessibility. The study has obtained information on COVID testing sites in Guangzhou City and population data. Point pattern analyses, Euclidian distance and allocation, and network analyses are the main methods used to achieve the research objectives, and 1183 total COVID testing sites can be recognized in Guangzhou City. Results revealed that spatial disparities could be noticed over the study area. Testing locations of Guangzhou City are highly clustered. The most significant testing sites are located in Haizhu District, which has the third largest population. The highest population density can be identified in Yuexiu District. However, only 94 testing sites are located there. According to all the results, higher disparities can be identified, and a lack of testing sites is located in the north part of the study area. Some people in the northern part have to travel more than 10 km to reach a testing site. Finally, this paper suggests increasing the number of testing sites in the north and south parts of the study area and keeping the same distribution, considering the area, total population, and population density. This kind of research will be helpful to decision-makers in making proper decisions to maintain a zero COVID policy.展开更多
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper...In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.展开更多
Aiming at the traditional CUK equalizer can only perform energy equalization between adjacent batteries,if the two single batteries that need to be equalized are far away from each other,there will be the problem of l...Aiming at the traditional CUK equalizer can only perform energy equalization between adjacent batteries,if the two single batteries that need to be equalized are far away from each other,there will be the problem of longer energy transmission path and lower equalization efficiency,this paper optimizes the CUK equalizer and optimizes its peripheral selection circuit,which can support the equalization of single batteries at any two positions.The control strategy adopts the open-circuit voltage(OVC)of the battery and the state of charge(SOC)of the battery as the equalization variables,and selects the corresponding equalization variables according to the energy conditions of the two batteries that need to be equalized,and generates the adaptive equalization current with an adaptive PID controller in order to improve the equalization efficiency.Simulation modeling is performed in Matlab/Simulink 2021b,and the experimental results show that the optimized CUK equalizer in this paper improves the equalization time by 25.58%compared with the traditional CUK equalizer.In addition,compared with the mean value difference(MVD)method,the adaptive PID method reduces the equalization time by about 30%in the static and charging and discharging experimental environments,which verifies the superiority of this equalization scheme.展开更多
Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small...Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.展开更多
Gender equality is a significant issue in the economic and social sectors.A McKinsey study found that promoting gender equality in the workplace could contribute US$13 trillion to global GDP growth.And if China reache...Gender equality is a significant issue in the economic and social sectors.A McKinsey study found that promoting gender equality in the workplace could contribute US$13 trillion to global GDP growth.And if China reaches the forefront of gender equality in the workplace in the Asia-Pacific region,it would generate about US$3 trillion in GDP.展开更多
In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load a...In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments.展开更多
In this paper, we considered the equality problem of weighted Bajraktarević means with weighted quasi-arithmetic means. Using the method of substituting for functions, we first transform the equality problem into solv...In this paper, we considered the equality problem of weighted Bajraktarević means with weighted quasi-arithmetic means. Using the method of substituting for functions, we first transform the equality problem into solving an equivalent functional equation. We obtain the necessary and sufficient conditions for the equality equation.展开更多
In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum ...In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.展开更多
A novel wavelet network based adaptive equalizer (WNBAE) is presented and the structure and stochastic gradient learning algorithm is given. The proposed WNBAE has better performance than that of the conventional lin...A novel wavelet network based adaptive equalizer (WNBAE) is presented and the structure and stochastic gradient learning algorithm is given. The proposed WNBAE has better performance than that of the conventional linear transversal equalizer based on the LMS and the RLS algorithms, as well as that of the decision feedback equalizer based on the RLS algorithm, especially for MQAM digital communication reception systems over the nonlinear channels. In addition, it outperforms the BP neural network based adaptive equalizer slightly. However, it has a slow convergence rate and a high computational complexity. Several simulations are performed to evaluate the behavior of the WNBAE.展开更多
A frequency-domain equalizer with a mixed-signal adaptive control loop and a novel baseline wander (BLW) canceller are proposed. The equalizer is independent of channel-modeling accuracy,and its control loop is intr...A frequency-domain equalizer with a mixed-signal adaptive control loop and a novel baseline wander (BLW) canceller are proposed. The equalizer is independent of channel-modeling accuracy,and its control loop is intrinsically stable. An AGC function is incorporated into the equalizer without an extra AGC circuit. The proposed BLW canceller uses a peak detector to monitor the BLW and full feedback method to accomplish BLW canceling. High canceling accuracy and robust performance are achieved. The circuits are tested in 0.25μm CMOS technology. Better performance and smaller silicon area are achieved compared with results in the literature.展开更多
In this paper, a time division duplex (TDD) multicarrier system based on Nyquist filter bank is proposed for wireless broadband communications. In this system a novel two tap pre equalizer is adopted to effectively su...In this paper, a time division duplex (TDD) multicarrier system based on Nyquist filter bank is proposed for wireless broadband communications. In this system a novel two tap pre equalizer is adopted to effectively suppress the inter symbol interference (ISI). Studies show that the system has almost the same frequency spectrum efficiency as the orthogonal frequency division multiplexing (OFDM) system. Simulation results show that the proposed system outperforms the conventional OFDM system with one tap ...展开更多
Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algor...Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algorithm adapting to different under-water acoustic channel environments is proposed by changing its central tap position. Besides, this new algorithm behaves faster convergence speed based on the analysis of equalizers’ working rules, which is more suitable to implement communications in dif-ferent unknown channels. Corresponding results and conclusions are validated by simulations and spot experiments.展开更多
A Simple and useful decision feedback equalizer used for non-linear channels with severe linear distortion and mild non-linear distortion is proposed. It is a combination of a nonlinear channel equalizer based on conn...A Simple and useful decision feedback equalizer used for non-linear channels with severe linear distortion and mild non-linear distortion is proposed. It is a combination of a nonlinear channel equalizer based on connectionist model and a common decision feedback equalizer for linear channels. For a typical non-linear channel model it is shown that the equalization performances of the proposed equalizer are improved significantly.展开更多
An improved least mean square/fourth direct adaptive equalizer(LMS/F-DAE)is proposed in this paper for underwater acoustic communication in the Arctic.It is able to process complex-valued baseband signals and has bett...An improved least mean square/fourth direct adaptive equalizer(LMS/F-DAE)is proposed in this paper for underwater acoustic communication in the Arctic.It is able to process complex-valued baseband signals and has better equalization performance than LMS.Considering the sparsity feature of equalizer tap coefficients,an adaptive norm(AN)is incorporated into the cost function which is utilized as a sparse regularization.The norm constraint changes adaptively according to the amplitude of each coefficient.For small-scale coefficients,the sparse constraint exists to accelerate the convergence speed.For large-scale coefficients,it disappears to ensure smaller equalization error.The performance of the proposed AN-LMS/F-DAE is verified by the experimental data from the 9th Chinese National Arctic Research Expedition.The results show that compared with the standard LMS/F-DAE,AN-LMS/F-DAE can promote the sparse level of the equalizer and achieve better performance.展开更多
Recently, two expressions (for the noiseless and noisy case) were proposed for the residual inter-symbol interference (ISI) obtained by blind adaptive equalizers, where the error of the equalized output signal may be ...Recently, two expressions (for the noiseless and noisy case) were proposed for the residual inter-symbol interference (ISI) obtained by blind adaptive equalizers, where the error of the equalized output signal may be expressed as a polynomial function of order 3. However, those expressions are not applicable for biased input signals. In this paper, a closed-form approximated expression is proposed for the residual ISI applicable for the noisy and biased input case. This new proposed expression is valid for blind adaptive equalizers, where the error of the equalized output signal may be expressed as a polynomial function of order 3. The new proposed expression depends on the equalizer’s tap length, input signal statistics, channel power, SNR, step-size parameter and on the input signal’s bias. Simulation results indicate a high correlation between the simulated results and those obtained from our new proposed expression.展开更多
Visible light communication(VLC) is expected to be a potential candidate of the key technologies in the sixth generation(6G) wireless communication system to support Internet of Things(IoT) applications. In this work,...Visible light communication(VLC) is expected to be a potential candidate of the key technologies in the sixth generation(6G) wireless communication system to support Internet of Things(IoT) applications. In this work, a separate least mean square(S-LMS) equalizer is proposed to compensate lowpass frequency response in VLC system. Joint optimization is employed to realize the proposed S-LMS equalizer with pre-part and post-part by introducing Lagrangian. For verification, the performance of VLC system based on multi-band carrier-less amplitude and phase(m-CAP) modulation with S-LMS equalizer is investigated and compared with that without equalizer,with LMS equalizer and with recursive least squares(RLS)-Volterra equalizer. Results indicate the proposed equalizer shows significant improved bit error ratio(BER) performance under the same conditions. Compared to the RLS-Volterra equalizer, SLMS equalizer achieves better performance under low data rate or high signal noise ratio(SNR) conditions with obviously lower computational complexity.展开更多
文摘Rapid and timely testing is essential to minimize the COVID-19 spread. Decision makers and policy planners need to determine the equal distribution and accessibility of testing sites. This study mainly examines the spatial equality of COVID-19 testing sites that maintain a zero COVID policy in Guangzhou City. The study has identified the spatial disparities of COVID testing sites, characteristics of testing locations, and accessibility. The study has obtained information on COVID testing sites in Guangzhou City and population data. Point pattern analyses, Euclidian distance and allocation, and network analyses are the main methods used to achieve the research objectives, and 1183 total COVID testing sites can be recognized in Guangzhou City. Results revealed that spatial disparities could be noticed over the study area. Testing locations of Guangzhou City are highly clustered. The most significant testing sites are located in Haizhu District, which has the third largest population. The highest population density can be identified in Yuexiu District. However, only 94 testing sites are located there. According to all the results, higher disparities can be identified, and a lack of testing sites is located in the north part of the study area. Some people in the northern part have to travel more than 10 km to reach a testing site. Finally, this paper suggests increasing the number of testing sites in the north and south parts of the study area and keeping the same distribution, considering the area, total population, and population density. This kind of research will be helpful to decision-makers in making proper decisions to maintain a zero COVID policy.
基金Project(U2202255)supported by the National Natural Science Foundation of ChinaProject(2024JJ2076)supported by the Hunan Provincial Natural Science Foundation of ChinaProject(2023Z092)supported by the Key Technology Research Program of Ningbo,China。
文摘In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample.
基金Natural Science Foundation of China(51677058)Scientific Research Program of Hubei Provincial Department of Education(T2021005).
文摘Aiming at the traditional CUK equalizer can only perform energy equalization between adjacent batteries,if the two single batteries that need to be equalized are far away from each other,there will be the problem of longer energy transmission path and lower equalization efficiency,this paper optimizes the CUK equalizer and optimizes its peripheral selection circuit,which can support the equalization of single batteries at any two positions.The control strategy adopts the open-circuit voltage(OVC)of the battery and the state of charge(SOC)of the battery as the equalization variables,and selects the corresponding equalization variables according to the energy conditions of the two batteries that need to be equalized,and generates the adaptive equalization current with an adaptive PID controller in order to improve the equalization efficiency.Simulation modeling is performed in Matlab/Simulink 2021b,and the experimental results show that the optimized CUK equalizer in this paper improves the equalization time by 25.58%compared with the traditional CUK equalizer.In addition,compared with the mean value difference(MVD)method,the adaptive PID method reduces the equalization time by about 30%in the static and charging and discharging experimental environments,which verifies the superiority of this equalization scheme.
文摘Channel equalization plays a pivotal role within the reconstruction phase of passive radar reference signals.In the context of reconstructing digital terrestrial multimedia broadcasting(DTMB)signals for low-slow-small(LSS)target detection,a novel frequency domain block joint equalization algorithm is presented in this article.From the DTMB signal frame structure and channel multipath transmission characteristics,this article adopts a unconventional approach where the delay and frame structure of each DTMB signal frame are reconfigured to create a circular convolution block,facilitating concurrent fast Fourier transform(FFT)calculations.Following equalization,an inverse fast Fourier transform(IFFT)-based joint output and subsequent data reordering are executed to finalize the equalization process for the DTMB signal.Simulation and measured data confirm that this algorithm outperforms conventional techniques by reducing signal errors rate and enhancing real-time processing.In passive radar LSS detection,it effectively suppresses multipath and noise through frequency domain equalization,reducing false alarms and improving the capabilities of weak target detection.
文摘Gender equality is a significant issue in the economic and social sectors.A McKinsey study found that promoting gender equality in the workplace could contribute US$13 trillion to global GDP growth.And if China reaches the forefront of gender equality in the workplace in the Asia-Pacific region,it would generate about US$3 trillion in GDP.
基金supported by the NationalNatural Science Foundation of China(No.52067013)the Natural Science Foundation of Gansu Province(No.20JR5RA395)as well as the Tianyou Innovation Team of Lanzhou Jiaotong University(TY202010).
文摘In this paper,an improved sag control strategy based on automatic SOC equalization is proposed to solve the problems of slow SOC equalization and excessive bus voltage fluctuation amplitude and offset caused by load and PV power variations in a stand-alone DC microgrid.The strategy includes primary and secondary control.Among them,the primary control suppresses the DC microgrid voltage fluctuation through the I and II section control,and the secondary control aims to correct the P-U curve of the energy storage system and the PV system,thus reducing the steady-state bus voltage excursion.The simulation results demonstrate that the proposed control strategy effectively achieves SOC balancing and enhances the immunity of bus voltage.The proposed strategy improves the voltage fluctuation suppression ability by approximately 39.4%and 43.1%under the PV power and load power fluctuation conditions,respectively.Furthermore,the steady-state deviation of the bus voltage,△U_(dc) is only 0.01–0.1 V,ensuring stable operation of the DC microgrid in fluctuating power environments.
文摘In this paper, we considered the equality problem of weighted Bajraktarević means with weighted quasi-arithmetic means. Using the method of substituting for functions, we first transform the equality problem into solving an equivalent functional equation. We obtain the necessary and sufficient conditions for the equality equation.
文摘In this paper performances of wavelet transform domain (WTD) adaptive equalizers based on the least mean ̄square (LMS) algorithm are analyzed. The optimum Wiener solution, the condition of convergence, the minimum mean square error (MSE) and the steady state excess MSE of the WTD adaptive equalizer are obtained. Constant and time varying convergence factor adaptive algorithms are studied respectively. Computational complexities of WTD LMS equalizers are given. The equalizer in WTD shows much better convergence performance than that of the conventional in time domain.
文摘A novel wavelet network based adaptive equalizer (WNBAE) is presented and the structure and stochastic gradient learning algorithm is given. The proposed WNBAE has better performance than that of the conventional linear transversal equalizer based on the LMS and the RLS algorithms, as well as that of the decision feedback equalizer based on the RLS algorithm, especially for MQAM digital communication reception systems over the nonlinear channels. In addition, it outperforms the BP neural network based adaptive equalizer slightly. However, it has a slow convergence rate and a high computational complexity. Several simulations are performed to evaluate the behavior of the WNBAE.
文摘A frequency-domain equalizer with a mixed-signal adaptive control loop and a novel baseline wander (BLW) canceller are proposed. The equalizer is independent of channel-modeling accuracy,and its control loop is intrinsically stable. An AGC function is incorporated into the equalizer without an extra AGC circuit. The proposed BLW canceller uses a peak detector to monitor the BLW and full feedback method to accomplish BLW canceling. High canceling accuracy and robust performance are achieved. The circuits are tested in 0.25μm CMOS technology. Better performance and smaller silicon area are achieved compared with results in the literature.
文摘In this paper, a time division duplex (TDD) multicarrier system based on Nyquist filter bank is proposed for wireless broadband communications. In this system a novel two tap pre equalizer is adopted to effectively suppress the inter symbol interference (ISI). Studies show that the system has almost the same frequency spectrum efficiency as the orthogonal frequency division multiplexing (OFDM) system. Simulation results show that the proposed system outperforms the conventional OFDM system with one tap ...
基金supported by the National Natural Science Foundation of China(61101205)the Natural Science Foundation of Hubei Province of China(2009CDB337)the Natural Science Foundation of Naval University of Engineering(HGDQNJJ13019)
文摘Aimed at the abominable influences to blind equaliza-tion algorithms caused by complex time-space variability existing in underwater acoustic channels, a new self-adjusting decision feedback equalization (DFE) algorithm adapting to different under-water acoustic channel environments is proposed by changing its central tap position. Besides, this new algorithm behaves faster convergence speed based on the analysis of equalizers’ working rules, which is more suitable to implement communications in dif-ferent unknown channels. Corresponding results and conclusions are validated by simulations and spot experiments.
基金Supported by the National Natural Science Foundation of China
文摘A Simple and useful decision feedback equalizer used for non-linear channels with severe linear distortion and mild non-linear distortion is proposed. It is a combination of a nonlinear channel equalizer based on connectionist model and a common decision feedback equalizer for linear channels. For a typical non-linear channel model it is shown that the equalization performances of the proposed equalizer are improved significantly.
基金The National Natural Science Foundation of China under contract Nos 61631008 and 61901136the National Key Research and Development Program of China under contract No.2018YFC1405904+3 种基金the Fok Ying-Tong Education Foundation under contract No.151007the Heilongjiang Province Outstanding Youth Science Fund under contract No.JC2017017the Opening Funding of Science and Technology on Sonar Laboratory under contract No.6142109KF201802the Innovation Special Zone of National Defense Science and Technology.
文摘An improved least mean square/fourth direct adaptive equalizer(LMS/F-DAE)is proposed in this paper for underwater acoustic communication in the Arctic.It is able to process complex-valued baseband signals and has better equalization performance than LMS.Considering the sparsity feature of equalizer tap coefficients,an adaptive norm(AN)is incorporated into the cost function which is utilized as a sparse regularization.The norm constraint changes adaptively according to the amplitude of each coefficient.For small-scale coefficients,the sparse constraint exists to accelerate the convergence speed.For large-scale coefficients,it disappears to ensure smaller equalization error.The performance of the proposed AN-LMS/F-DAE is verified by the experimental data from the 9th Chinese National Arctic Research Expedition.The results show that compared with the standard LMS/F-DAE,AN-LMS/F-DAE can promote the sparse level of the equalizer and achieve better performance.
文摘Recently, two expressions (for the noiseless and noisy case) were proposed for the residual inter-symbol interference (ISI) obtained by blind adaptive equalizers, where the error of the equalized output signal may be expressed as a polynomial function of order 3. However, those expressions are not applicable for biased input signals. In this paper, a closed-form approximated expression is proposed for the residual ISI applicable for the noisy and biased input case. This new proposed expression is valid for blind adaptive equalizers, where the error of the equalized output signal may be expressed as a polynomial function of order 3. The new proposed expression depends on the equalizer’s tap length, input signal statistics, channel power, SNR, step-size parameter and on the input signal’s bias. Simulation results indicate a high correlation between the simulated results and those obtained from our new proposed expression.
基金supported by National Natural Science Foundation of China (No.61671055)Scientific and Technological Innovation Foundation of Shunde Graduate School, USTB(BK19BF008)。
文摘Visible light communication(VLC) is expected to be a potential candidate of the key technologies in the sixth generation(6G) wireless communication system to support Internet of Things(IoT) applications. In this work, a separate least mean square(S-LMS) equalizer is proposed to compensate lowpass frequency response in VLC system. Joint optimization is employed to realize the proposed S-LMS equalizer with pre-part and post-part by introducing Lagrangian. For verification, the performance of VLC system based on multi-band carrier-less amplitude and phase(m-CAP) modulation with S-LMS equalizer is investigated and compared with that without equalizer,with LMS equalizer and with recursive least squares(RLS)-Volterra equalizer. Results indicate the proposed equalizer shows significant improved bit error ratio(BER) performance under the same conditions. Compared to the RLS-Volterra equalizer, SLMS equalizer achieves better performance under low data rate or high signal noise ratio(SNR) conditions with obviously lower computational complexity.