Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed ...Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed into the model. And the computational errors are corrected using statistical approaches. It involves a variety of aspects, including the uncertainty modeling, the measurement evaluation, the system model and the measurement model coupling ,the computation complexity, and the performance issue. Authors intend to set up the architecture of DDDS for wildfire spread model, DEVS-FIRE, based on the discrete event speeification (DEVS) formalism. The experimental results show that the framework can track the dynamically changing fire front based on fire sen- sor data, thus, it provides more aecurate predictions.展开更多
Particle Filter (PF) is a data assimilation method to solve recursive state estimation problem which does not depend on the assumption of Gaussian noise, and is able to be applied for various systems even with non-l...Particle Filter (PF) is a data assimilation method to solve recursive state estimation problem which does not depend on the assumption of Gaussian noise, and is able to be applied for various systems even with non-linear and non-Gaussian noise. However, while applying PF in dynamic systems, PF undergoes particle degeneracy, sample impoverishment, and problems of high computational complexity. Rapidly developing sensing technologies are providing highly convenient availability of real-time big traffic data from the system under study like never before. Moreover, some sensors can even receive control commands to adjust their monitoring parameters. To address these problems, a bidirectional dynamic data-driven improvement framework for PF (B3DPF) is proposed. The B3DPF enhances feedback between the simulation model and the big traffic data collected by the sensors, which means the execution strategies (sensor data management, parameters used in the weight computation, resampling) of B3DPF can be optimized based on the simulation results and the types and dimensions of traffic data injected into B3DPF can be adjusted dynamically. The first experiment indicates that the B3DPF overcomes particle degeneracy and sample impoverishment problems and accurately estimates the state at a faster speed than the normal PF. More importantly, the new method has higher accuracy for multidimensional random systems. In the rest of experiments, the proposed framework is applied to estimate the traffic state on a real road network and obtains satisfactory results. More experiments can be designed to validate the universal properties of B3DPF.展开更多
文摘Dynamic data driven simulation (DDDS) is proposed to improve the model by incorporaing real data from the practical systems into the model. Instead of giving a static input, multiple possible sets of inputs are fed into the model. And the computational errors are corrected using statistical approaches. It involves a variety of aspects, including the uncertainty modeling, the measurement evaluation, the system model and the measurement model coupling ,the computation complexity, and the performance issue. Authors intend to set up the architecture of DDDS for wildfire spread model, DEVS-FIRE, based on the discrete event speeification (DEVS) formalism. The experimental results show that the framework can track the dynamically changing fire front based on fire sen- sor data, thus, it provides more aecurate predictions.
基金supported by the State Basic Scientific Research of National Defense (No. c0420110005)13th Five-Year Key Basic Research Project (No. JCKY2016206B001)the Six talent peaks project in Jiangsu Province (No. XXRJ-004)
文摘Particle Filter (PF) is a data assimilation method to solve recursive state estimation problem which does not depend on the assumption of Gaussian noise, and is able to be applied for various systems even with non-linear and non-Gaussian noise. However, while applying PF in dynamic systems, PF undergoes particle degeneracy, sample impoverishment, and problems of high computational complexity. Rapidly developing sensing technologies are providing highly convenient availability of real-time big traffic data from the system under study like never before. Moreover, some sensors can even receive control commands to adjust their monitoring parameters. To address these problems, a bidirectional dynamic data-driven improvement framework for PF (B3DPF) is proposed. The B3DPF enhances feedback between the simulation model and the big traffic data collected by the sensors, which means the execution strategies (sensor data management, parameters used in the weight computation, resampling) of B3DPF can be optimized based on the simulation results and the types and dimensions of traffic data injected into B3DPF can be adjusted dynamically. The first experiment indicates that the B3DPF overcomes particle degeneracy and sample impoverishment problems and accurately estimates the state at a faster speed than the normal PF. More importantly, the new method has higher accuracy for multidimensional random systems. In the rest of experiments, the proposed framework is applied to estimate the traffic state on a real road network and obtains satisfactory results. More experiments can be designed to validate the universal properties of B3DPF.