The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualiz...Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.展开更多
The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and...The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(展开更多
The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or m...The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or more separate network infrastructures.All Internet traffic entering a country should pass through its IXP.Thus,it is an ideal location for performing malicious traffic analysis.Distributed denial of service(DDoS)attacks are becoming a more serious daily threat.Malicious actors in DDoS attacks control numerous infected machines known as botnets.Botnets are used to send numerous fake requests to overwhelm the resources of victims and make them unavailable for some periods.To date,such attacks present a major devastating security threat on the Internet.This paper proposes an effective and efficient machine learning(ML)-based DDoS detection approach for the early warning and protection of the Saudi Arabia Internet exchange point(SAIXP)platform.The effectiveness and efficiency of the proposed approach are verified by selecting an accurate ML method with a small number of input features.A chi-square method is used for feature selection because it is easier to compute than other methods,and it does not require any assumption about feature distribution values.Several ML methods are assessed using holdout and 10-fold tests on a public large-size dataset.The experiments showed that the performance of the decision tree(DT)classifier achieved a high accuracy result(99.98%)with a small number of features(10 features).The experimental results confirmthe applicability of using DT and chi-square for DDoS detection and early warning in SAIXP.展开更多
Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global infor...Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.展开更多
本文提出一种面向不平衡数据的DDoS攻击检测模型,提升对DDoS洪泛攻击的检测效果。以OpenStack为核心技术设计网络靶场,并使用Ceph分布式存储替换OpenStack原生存储系统,提出一种OpenStack与Ceph的超融合网络靶场方案,可以实现对计算、...本文提出一种面向不平衡数据的DDoS攻击检测模型,提升对DDoS洪泛攻击的检测效果。以OpenStack为核心技术设计网络靶场,并使用Ceph分布式存储替换OpenStack原生存储系统,提出一种OpenStack与Ceph的超融合网络靶场方案,可以实现对计算、存储、网络资源的统一管理。首先,针对Ceph集群在存储时的数据分布不均情况对平台存储性能的影响,提出一种基于好感度的数据存储优化算法,利用好感度因子约束数据的存储位置,有效提高集群中所有OSD节点存储数据的均衡性。同时,设计了一种基于软件定义网络(Software Defined Network,SDN)的DDoS洪泛攻击检测与缓解方法,有效降低了对物理设备性能的要求,最后结合Ryu控制器的可编程性,实现DDoS洪泛攻击缓解方法。展开更多
针对现有的DDoS(distributed denial of service)攻击检测模型面临大量数据时,呈现出检测效率低的问题。为适应当前网络环境,通过研究DDoS攻击检测模型、提取流量特征、计算攻击密度,提出一种基于融合稀疏注意力机制的DDoS攻击检测模型G...针对现有的DDoS(distributed denial of service)攻击检测模型面临大量数据时,呈现出检测效率低的问题。为适应当前网络环境,通过研究DDoS攻击检测模型、提取流量特征、计算攻击密度,提出一种基于融合稀疏注意力机制的DDoS攻击检测模型GVBNet(global variable block net),使用攻击密度自适应计算稀疏注意力。利用信息熵以及信息增益分析提取攻击流量的连续字节作为特征向量,通过构建基于GVBNet的网络模型在两种数据集上进行训练。实验结果表明,该方法具有良好的识别效果、检测速度以及抗干扰能力,在不同的环境下具有应用价值。展开更多
ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area networks where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP attack, the DDoS ...ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area networks where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP attack, the DDoS agents constantly send a barrage of ARP requests to the gateway, or to a victim computer within the same sub-network, and tie up the resource of attacked gateway or host. In this paper, we set to measure the impact of ARP-attack on resource exhaustion of computers in a local area network. Based on attack experiments, we measure the exhaustion of processing and memory resources of a victim computer and also other computers, which are located on the same network as the victim computer. Interestingly enough, it is observed that an ARP-attack not only exhausts resource of the victim computer but also significantly exhausts processing resource of other non-victim computers, which happen to be located on the same local area network as the victim computer.展开更多
在软件定义网络(Software Defined Networking,SDN)中,控制层很容易受到分布式拒绝服务(Distributed Denial of Service,DDoS)攻击的威胁。攻击者通过恶意请求或数据流等方式,向SDN控制器发送大量请求,从而使控制器资源耗尽,导致控制器...在软件定义网络(Software Defined Networking,SDN)中,控制层很容易受到分布式拒绝服务(Distributed Denial of Service,DDoS)攻击的威胁。攻击者通过恶意请求或数据流等方式,向SDN控制器发送大量请求,从而使控制器资源耗尽,导致控制器不能正常工作。因此,防范和处理控制层DDoS攻击是SDN安全的关键。该文提出一种基于区块链与排队理论的DDoS攻击检测防御机制,该防御机制结合区块链技术,设计了一种新的SDN架构模型,该模型对SDN控制层重新进行构造,在SDN控制层加入容量监控模块、安全模块及区块链模块。容量监控模块基于排队理论,计算进入控制器数据包队列的长度阈值,当队列内数据包数目连续2次超过阈值或控制器规则表容量达到70%容量触发报警,安全模块用于触发报警后在设置报警的数据包进行DDoS特征匹配,如果被确定为异常数据则将数据包摘要信息上传至区块链,利用智能合约共享异常数据包信息摘要,既能够防止过多的信息记录在区块链造成系统负载,又能够使SDN网络信息达成共识。对该攻击检测防御机制进行仿真实验,选出了效果最优参数,实验结果表明,与同类型系统相比,该机制对异常数据流的检测率及正常数据流的误报率均有所提升。展开更多
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
文摘Cloud computing technology provides flexible,on-demand,and completely controlled computing resources and services are highly desirable.Despite this,with its distributed and dynamic nature and shortcomings in virtualization deployment,the cloud environment is exposed to a wide variety of cyber-attacks and security difficulties.The Intrusion Detection System(IDS)is a specialized security tool that network professionals use for the safety and security of the networks against attacks launched from various sources.DDoS attacks are becoming more frequent and powerful,and their attack pathways are continually changing,which requiring the development of new detection methods.Here the purpose of the study is to improve detection accuracy.Feature Selection(FS)is critical.At the same time,the IDS’s computational problem is limited by focusing on the most relevant elements,and its performance and accuracy increase.In this research work,the suggested Adaptive butterfly optimization algorithm(ABOA)framework is used to assess the effectiveness of a reduced feature subset during the feature selection phase,that was motivated by this motive Candidates.Accurate classification is not compromised by using an ABOA technique.The design of Deep Neural Networks(DNN)has simplified the categorization of network traffic into normal and DDoS threat traffic.DNN’s parameters can be finetuned to detect DDoS attacks better using specially built algorithms.Reduced reconstruction error,no exploding or vanishing gradients,and reduced network are all benefits of the changes outlined in this paper.When it comes to performance criteria like accuracy,precision,recall,and F1-Score are the performance measures that show the suggested architecture outperforms the other existing approaches.Hence the proposed ABOA+DNN is an excellent method for obtaining accurate predictions,with an improved accuracy rate of 99.05%compared to other existing approaches.
文摘The distributed denial of service (DDoS) attack is one of the dangers in intrusion modes. It's difficult to defense and can cause serious damage to the system. Based on a careful study of the attack principles and characteristics, an object-oriented formalized description is presented, which contains a three-level framework and offers full specifications of all kinds of DDoS modes and their features and the relations between one another. Its greatest merit lies in that it contributes to analyzing, checking and judging DDoS. Now this formalized description has been used in a special IDS and it works very effectively.(
文摘The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or more separate network infrastructures.All Internet traffic entering a country should pass through its IXP.Thus,it is an ideal location for performing malicious traffic analysis.Distributed denial of service(DDoS)attacks are becoming a more serious daily threat.Malicious actors in DDoS attacks control numerous infected machines known as botnets.Botnets are used to send numerous fake requests to overwhelm the resources of victims and make them unavailable for some periods.To date,such attacks present a major devastating security threat on the Internet.This paper proposes an effective and efficient machine learning(ML)-based DDoS detection approach for the early warning and protection of the Saudi Arabia Internet exchange point(SAIXP)platform.The effectiveness and efficiency of the proposed approach are verified by selecting an accurate ML method with a small number of input features.A chi-square method is used for feature selection because it is easier to compute than other methods,and it does not require any assumption about feature distribution values.Several ML methods are assessed using holdout and 10-fold tests on a public large-size dataset.The experiments showed that the performance of the decision tree(DT)classifier achieved a high accuracy result(99.98%)with a small number of features(10 features).The experimental results confirmthe applicability of using DT and chi-square for DDoS detection and early warning in SAIXP.
文摘Over time, the world has transformed digitally and there is total dependence on the internet. Many more gadgets are continuously interconnected in the internet ecosystem. This fact has made the Internet a global information source for every being. Despite all this, attacker knowledge by cybercriminals has advanced and resulted in different attack methodologies on the internet and its data stores. This paper will discuss the origin and significance of Denial of Service (DoS) and Distributed Denial of Service (DDoS). These kinds of attacks remain the most effective methods used by the bad guys to cause substantial damage in terms of operational, reputational, and financial damage to organizations globally. These kinds of attacks have hindered network performance and availability. The victim’s network is flooded with massive illegal traffic hence, denying genuine traffic from passing through for authorized users. The paper will explore detection mechanisms, and mitigation techniques for this network threat.
文摘本文提出一种面向不平衡数据的DDoS攻击检测模型,提升对DDoS洪泛攻击的检测效果。以OpenStack为核心技术设计网络靶场,并使用Ceph分布式存储替换OpenStack原生存储系统,提出一种OpenStack与Ceph的超融合网络靶场方案,可以实现对计算、存储、网络资源的统一管理。首先,针对Ceph集群在存储时的数据分布不均情况对平台存储性能的影响,提出一种基于好感度的数据存储优化算法,利用好感度因子约束数据的存储位置,有效提高集群中所有OSD节点存储数据的均衡性。同时,设计了一种基于软件定义网络(Software Defined Network,SDN)的DDoS洪泛攻击检测与缓解方法,有效降低了对物理设备性能的要求,最后结合Ryu控制器的可编程性,实现DDoS洪泛攻击缓解方法。
文摘ARP-based Distributed Denial of Service (DDoS) attacks due to ARP-storms can happen in local area networks where many computer systems are infected by worms such as Code Red or by DDoS agents. In ARP attack, the DDoS agents constantly send a barrage of ARP requests to the gateway, or to a victim computer within the same sub-network, and tie up the resource of attacked gateway or host. In this paper, we set to measure the impact of ARP-attack on resource exhaustion of computers in a local area network. Based on attack experiments, we measure the exhaustion of processing and memory resources of a victim computer and also other computers, which are located on the same network as the victim computer. Interestingly enough, it is observed that an ARP-attack not only exhausts resource of the victim computer but also significantly exhausts processing resource of other non-victim computers, which happen to be located on the same local area network as the victim computer.
文摘在软件定义网络(Software Defined Networking,SDN)中,控制层很容易受到分布式拒绝服务(Distributed Denial of Service,DDoS)攻击的威胁。攻击者通过恶意请求或数据流等方式,向SDN控制器发送大量请求,从而使控制器资源耗尽,导致控制器不能正常工作。因此,防范和处理控制层DDoS攻击是SDN安全的关键。该文提出一种基于区块链与排队理论的DDoS攻击检测防御机制,该防御机制结合区块链技术,设计了一种新的SDN架构模型,该模型对SDN控制层重新进行构造,在SDN控制层加入容量监控模块、安全模块及区块链模块。容量监控模块基于排队理论,计算进入控制器数据包队列的长度阈值,当队列内数据包数目连续2次超过阈值或控制器规则表容量达到70%容量触发报警,安全模块用于触发报警后在设置报警的数据包进行DDoS特征匹配,如果被确定为异常数据则将数据包摘要信息上传至区块链,利用智能合约共享异常数据包信息摘要,既能够防止过多的信息记录在区块链造成系统负载,又能够使SDN网络信息达成共识。对该攻击检测防御机制进行仿真实验,选出了效果最优参数,实验结果表明,与同类型系统相比,该机制对异常数据流的检测率及正常数据流的误报率均有所提升。