The current therapeutic regimen to combat chronic hepatitis C is not optimal due to substantial side effects and the failure of a significant proportion of patients to achieve a sustained virological response. Recentl...The current therapeutic regimen to combat chronic hepatitis C is not optimal due to substantial side effects and the failure of a significant proportion of patients to achieve a sustained virological response. Recently developed direct-acting antivirals targeting hepatitis C virus (HCV) enzymes reportedly increase the virologic response to therapy but may lead to a selection of drug-resistant variants. Besides direct-acting antivirals, another promising class of HCV drugs in development include host targeting agents that are responsible for interfering with the host factors crucial for the viral life cycle. A family of host proteins known as DEAD-box RNA helicases, characterized by nine conserved motifs, is known to play an important role in RNA metabolism. Several members of this family such as DDX3, DDX5 and DDX6 have been shown to play a role in HCV replication and this review will summarize our current knowledge on their interaction with HCV. As chronic hepatitis C is one of the leading causes of hepatocellular carcinoma, the involvement of DEAD-box RNA helicases in the development of HCC will also be highlighted. Continuing research on the interaction of host DEAD-box proteins with HCV and the contribution to viral replication and pathogenesis could be the panacea for the development of novel therapeutics against HCV.展开更多
Grapevine growing areas are increasingly affected by drought,which has greatly limited global wine production and quality.DEAD-box is one of the largest subfamilies of the RNA helicase family,and its members play key ...Grapevine growing areas are increasingly affected by drought,which has greatly limited global wine production and quality.DEAD-box is one of the largest subfamilies of the RNA helicase family,and its members play key roles in the growth and development of plants and their stress responses.Previous studies have shown the potential of DEAD-box genes in the drought stress responses of Arabidopsis and tomato,rice,and other crop species.However,information about DEAD-box genes in grapevine remains limited.In this report,a total of 40 DEAD-box genes were identified in grapevine and their protein sequence characteristics and gene structures were analyzed.By comparing the expression profiles of VviDEADRHs in response to drought stress in different grapevine varieties,nine candidate genes(VviDEADRH10c,-13,-22,-25a,-25b,-33,-34,-36,and-39)were screened based on expression profiling data.Combined with qRTPCR results,Vvi DEADRH25a was selected for functional verification.Heterologous overexpression of Vvi DEADRH25a in Arabidopsis showed the transgenic plants were more sensitive to drought stress than the control.Both electrolyte permeability and malondialdehyde content were significantly increased in transgenic plants,whereas the chlorophyll content and superoxide dismutase(SOD),peroxidase(POD),catalase(CAT),and ascorbate peroxidase(APX)enzyme activities were significantly decreased.Furthermore,VviDEADRH25a-overexpressing plants showed down-regulated expression levels of several drought stress-related marker genes,namely At COR15a,At RD29A,At ERD15,and At P5CS1,which indicated that they participated in the drought stress response.In summary,this study provides new insights into the structure,evolution,and participation of DEAD-box RNA helicase genes in the response to drought stress in grapevines.展开更多
Hematopoiesis represents a meticulously regulated and dynamic biological process.Genetic aberrations affecting blood cells,induced by various factors,frequently give rise to hematological tumors.These instances are of...Hematopoiesis represents a meticulously regulated and dynamic biological process.Genetic aberrations affecting blood cells,induced by various factors,frequently give rise to hematological tumors.These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events,including RNA alternative splicing,RNA localization,RNA degradation,and storage.Notably,post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis.The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors,intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing,RNA modification,and ribosome assembly.This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEADBox RNA helicases in malignant hematopoiesis.Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system.展开更多
This investigation aimed to unveil new prospective diagnosis-related biomarkers together with treatment targets against glioblastoma.Methods:The expression levels of long non-coding RNA(lncRNA)DPP10-AS1 were assessed ...This investigation aimed to unveil new prospective diagnosis-related biomarkers together with treatment targets against glioblastoma.Methods:The expression levels of long non-coding RNA(lncRNA)DPP10-AS1 were assessed using real-time quantitative polymerase chain reaction(RT-qPCR)within both the patient tissue specimens and glioblastoma cell lines.The relationship between lncRNA DPP10-AS1 expression in glioblastoma and patient prognosis was investigated.Cell Counting Kit-8(CCK-8),transwell,and clonogenic experiments were utilized to assess tumor cells’proliferation,invasiveness,and migratory potentials after lncRNA DPP10-AS1 expression was up or down-regulated.Using an online bioinformatics prediction tool,the intracellular localization of lncRNA DPP10-AS1 and its target miRNA were predicted,and RNA-FISH verified results.A dual-luciferase reporter experiment validated the relationship across miR-24-3p together with lncRNA DPP10-AS1.MiR-24-3p expression within glioblastoma was identified through RT-qPCR,and potential link across miR-24-3p and lncRNA DPP10-AS1 was assessed using Pearson correlation analysis.Moreover,influence from lncRNA DPP10-AS1/miR-24-3p axis upon glioblastoma cell progression was assessed in vivo via a subcutaneous xenograft tumor model.Results:The expression of lncRNA DPP10-AS1 was notably reduced in both surgical specimens of glioblastoma and the equivalent cell lines.Low level of lncRNA DPP10-AS1 in glioblastoma is following poor prognosis.The downregulation of lncRNA DPP10-AS1 in glioblastoma cells resulted in enhanced cellular proliferation,migration,and invasion capabilities,accompanied by downregulated E-cadherin and upregulated vimentin and N-cadherin.Additionally,the observed upregulation of lncRNA DPP10-AS1 demonstrated a substantial inhibitory function upon proliferation,invasion,and migratory capabilities of LN229 cells.Subcellular localization disclosed that lncRNA DPP10-AS1 had a binding site that interacted with miR-24-3p.Upregulated miR-24-3p was detected in glioblastomas,displaying an inverse correlation with lncRNA DPP10-AS1 expression.MiR-24-3p downstream target has been determined as chromodomain helicase DNA binding protein 5(CHD5).LncRNA DPP10-AS1 affected the invasion and proliferation of glioblastoma by controlling the miR-24-3p/CHD5 axis.Conclusion:The present study demonstrated that lncRNA DPP10-AS1 can inhibit the invasive,migratory,and proliferative properties of glioblastoma by regulating the miR-24-3p/CHD5 signaling pathway.Consequently,lncRNA DPP10-AS1 has potential as a tumor suppressor and might be utilized for accurate diagnosis and targeted treatments of glioblastomas.展开更多
小整合频率1(petite integration frequency 1,PIF1)解旋酶广泛存在于生物体内,在核酸的代谢过程中发挥着重要作用。近年来,人们已经报道了多种PIF1解旋酶的生化活性及三维结构,但对极端环境下细菌的PIF1解旋酶的报道仍较少。本文利用...小整合频率1(petite integration frequency 1,PIF1)解旋酶广泛存在于生物体内,在核酸的代谢过程中发挥着重要作用。近年来,人们已经报道了多种PIF1解旋酶的生化活性及三维结构,但对极端环境下细菌的PIF1解旋酶的报道仍较少。本文利用多种生物化学与生物物理学技术,对黄石热脱硫弧菌PIF1(Ty.PIF1)解旋酶进行了多方面研究。通过原核表达纯化系统,获得了纯度90%以上,均一性好的Ty.PIF1蛋白。Ty.PIF1在溶液中为单体,分子量约为60 kD。Ty.PIF1具有很高的热稳定性,在65℃以下时,二级结构保持稳定,大于70℃时,二级结构才会发生改变。Ty.PIF1在体外最适解旋温度为45℃,并非黄石热脱硫弧菌生存的最适温度,预示着Ty.PIF1在体内发挥活性时,可能需要其他辅助因子的参与。Ty.PIF1的酶活力温度范围较宽,在20~55℃均具有解旋活性,在55℃能解旋预示了Ty.PIF1具有耐热特性。Ty.PIF1偏向于同含有单链的底物结合,但对单链长度有一定要求,其长度至少大于4 nt;Ty.PIF1也会较好地结合无单链尾链的G4结构,说明Ty.PIF1可能有专门结合G4结构的区域。Ty.PIF1能解开一系列带有5′-单链尾链的类似于复制中间体的底物,且对底物结构有一定的偏好性;Ty.PIF1也可以解开含有G4结构的底物,DNA-RNA杂交链、RNA-loop结构,预示着Ty.PIF1在生物体内有着多种生物学功能。Ty.PIF1解旋带有不同长度5′-单链尾链的双链底物时,尾链长度越长,解旋速率越快,预示着Ty.PIF1可能与Sc.PIF1一样有着较低的解旋持续性。本文将Ty.PIF1的生化活性与其它物种的PIF1解旋酶进行了比较,找出了其中的共性与差异,加深了人们对嗜热菌PIF1解旋酶的认识,为今后研究其它极端环境微生物的PIF1解旋酶提供了一些思路。展开更多
目的:探讨染色质解旋酶DNA结合蛋白1样基因(chromodomain helicase/ATPase DNA binding protein 1-like gene,CHD1L)对前列腺癌细胞侵袭、迁移能力的影响及其可能的作用机制。方法:采用实时荧光定量PCR技术检测前列腺癌细胞株LNCAP、PC3...目的:探讨染色质解旋酶DNA结合蛋白1样基因(chromodomain helicase/ATPase DNA binding protein 1-like gene,CHD1L)对前列腺癌细胞侵袭、迁移能力的影响及其可能的作用机制。方法:采用实时荧光定量PCR技术检测前列腺癌细胞株LNCAP、PC3、DU145以及前列腺上皮细胞株RWPE-1中CHD1L mRNA表达水平;转染siRNA干扰前列腺癌PC3细胞CHD1L的表达,并用Transwell侵袭实验和划痕实验分析沉默CHD1L对前列腺癌细胞侵袭和迁移能力的影响;Western blotting检测PC3细胞MMP-9、N-钙黏蛋白和E-钙黏蛋白的表达水平。结果:CHD1L mRNA在前列腺癌细胞中的表达水平明显高于前列腺上皮细胞(P<0.01),其中以前列腺癌PC3细胞的表达水平最高。侵袭实验中,干扰组的穿膜细胞数明显低于阴性对照组和空白对照组[(49.67±6.67)vs(113.67±5.69)和(112.00±12.49)个,P<0.05)。划痕实验中,干扰组48 h伤口愈合率也低于阴性对照组和空白对照组[(21.27±3.27)%vs(48.47±5.72)%和(49.93±3.35)%,P<0.05]。干扰组细胞MMP-9和N-钙黏蛋白表达下调,E-钙黏蛋白表达上调。结论:沉默CHD1L可降低前列腺癌PC3细胞的侵袭迁移能力,该作用可能是通过调控MMP-9和EMT相关蛋白表达实现的。展开更多
In the era of advancement,the entire world continues to remain baffled by the increased rate of progression of cancer.There has been an unending search for novel thera-peutic targets and prognostic markers to curb the...In the era of advancement,the entire world continues to remain baffled by the increased rate of progression of cancer.There has been an unending search for novel thera-peutic targets and prognostic markers to curb the oncogenic scenario.The DEAD-box RNA he-licases are a large family of proteins characterized by their evolutionary conserved D-E-A-D(Asp-Glu-Ala-Asp)domain and merit consideration in the oncogenic platform.They perform multidimensional functions in RNA metabolism and also in the pathology of cancers.Their bio-logical role ranges from ribosome biogenesis,RNA unwinding,splicing,modification of second-ary and tertiary RNA structures to acting as transcriptional coactivators/repressors of various important oncogenic genes.They also play a crucial role in accelerating oncogenesis by pro-moting cell proliferation and metastasis.DDX5(p68)is one of the archetypal members of this family of proteins and has gained a lot of attention due to its oncogenic attribute.It is found to be overexpressed in major cancer types such as colon,brain,breast,and prostate cancer.It exhibits its multifaceted nature by not only coactivating genes implicated in cancers but also mediating crosstalk across major signaling pathways in cancer.Therefore,in this review,we aim to illustrate a comprehensive overview of DEAD-box RNA helicases especially p68 by focusing on their multifaceted roles in different cancers and the various signaling pathways affected by them.Further,we have also briefly discoursed the therapeutic interventional approaches with the DEAD-box RNA helicases as the pharmacological targets for designing in-hibitors to pave way for cancer therapy.展开更多
Foot-and-mouth disease virus(FMDV)can infect domestic and wild cloven-hoofed animals.The non-structural protein 3D plays an important role in FMDV replication and pathogenesis.However,the interaction partners of 3D,an...Foot-and-mouth disease virus(FMDV)can infect domestic and wild cloven-hoofed animals.The non-structural protein 3D plays an important role in FMDV replication and pathogenesis.However,the interaction partners of 3D,and the effects of those interactions on FMDV replication,remain incompletely elucidated.In the present study,using the yeast two-hybrid system,we identified a porcine cell protein,DEAD-box RNA helicase 1(DDX1),which interacted with FMDV 3D.The DDX1-3D interaction was further confirmed by co-immunoprecipitation experiments and an indirect immunofluorescence assay(IFA)in porcine kidney 15(PK-15)cells.DDX1 was reported to either inhibit or facilitate viral replication and regulate host innate immune responses.However,the roles of DDX1 during FMDV infection remain unclear.Our results revealed that DDX1 inhibited FMDV replication in an ATPase/helicase activity-dependent manner.In addition,DDX1 stimulated IFN-p activation in FMDV-infected cells.Together,our results expand the body of knowledge regarding the role of DDX1 in FMDV infection.展开更多
目的探讨RNA传感器干扰素诱导的解旋酶C结构域蛋白1(interferon-induced helicase C domain protein 1,IFIH1)对人乳头瘤病毒18型(human papillomavirus 18,HPV18)阳性的人宫颈癌细胞HeLa增殖、迁移和侵袭的影响。方法利用GEPIA数据库分...目的探讨RNA传感器干扰素诱导的解旋酶C结构域蛋白1(interferon-induced helicase C domain protein 1,IFIH1)对人乳头瘤病毒18型(human papillomavirus 18,HPV18)阳性的人宫颈癌细胞HeLa增殖、迁移和侵袭的影响。方法利用GEPIA数据库分析IFIH1在正常宫颈组织和宫颈癌组织中的表达。Western blot检测IFIH1在C33A和HeLa细胞中的表达。将HPV18基因组转染到正常上皮细胞HaCaT中,并利用Western blot和实时定量PCR检测IFIH1的表达水平。利用实时无标记动态细胞分析技术和CCK8法检测细胞的增殖能力。划痕愈合实验、Transwell迁移实验和侵袭实验分别检测细胞的迁移能力和侵袭能力。Western blot和免疫荧光实验检测STAT3和磷酸化STAT3的蛋白表达和定位。结果GEPIA数据库分析显示IFIH1在宫颈癌组织中的表达量明显高于正常宫颈组织(P<0.05);相比于C33A细胞,HeLa细胞中IFIH1的表达水平明显增加(P<0.01);与正常HaCaT细胞相比,转染HPV18的HaCaT细胞中IFIH1的表达增加(P<0.01);与阴性对照相比,敲低IFIH1明显抑制HeLa细胞的增殖、迁移和侵袭能力,而过表达IFIH1则促进C33A细胞的增殖、迁移和侵袭(P<0.01);敲低IFIH1后,磷酸化STAT3蛋白的表达减少(P<0.01)。结论IFIHI在被HPV感染的宫颈癌细胞中表达增加,这将促进细胞的增殖、迁移和侵袭能力,可能与激活STAT3有关。展开更多
基金Supported by Grants from the Ministry of Education of Singapore,Academic Research Fund Tier 1 Grant R-182-000-170-112
文摘The current therapeutic regimen to combat chronic hepatitis C is not optimal due to substantial side effects and the failure of a significant proportion of patients to achieve a sustained virological response. Recently developed direct-acting antivirals targeting hepatitis C virus (HCV) enzymes reportedly increase the virologic response to therapy but may lead to a selection of drug-resistant variants. Besides direct-acting antivirals, another promising class of HCV drugs in development include host targeting agents that are responsible for interfering with the host factors crucial for the viral life cycle. A family of host proteins known as DEAD-box RNA helicases, characterized by nine conserved motifs, is known to play an important role in RNA metabolism. Several members of this family such as DDX3, DDX5 and DDX6 have been shown to play a role in HCV replication and this review will summarize our current knowledge on their interaction with HCV. As chronic hepatitis C is one of the leading causes of hepatocellular carcinoma, the involvement of DEAD-box RNA helicases in the development of HCC will also be highlighted. Continuing research on the interaction of host DEAD-box proteins with HCV and the contribution to viral replication and pathogenesis could be the panacea for the development of novel therapeutics against HCV.
基金financially supported by grants from the National Natural Science Foundation of China(32072517)the National Key Research and Development Program of China(2018YFD1000105)+2 种基金the Program for Science&Technology Innovation Talents in Universities of Henan Province,China(21HASTIT035)the Program for Innovative Research Team(in Science and Technology)in University of Henan Province,China(21IRTSTHN021)the Science and Technology Planning Project of Luoyang City,China(2101102A)。
文摘Grapevine growing areas are increasingly affected by drought,which has greatly limited global wine production and quality.DEAD-box is one of the largest subfamilies of the RNA helicase family,and its members play key roles in the growth and development of plants and their stress responses.Previous studies have shown the potential of DEAD-box genes in the drought stress responses of Arabidopsis and tomato,rice,and other crop species.However,information about DEAD-box genes in grapevine remains limited.In this report,a total of 40 DEAD-box genes were identified in grapevine and their protein sequence characteristics and gene structures were analyzed.By comparing the expression profiles of VviDEADRHs in response to drought stress in different grapevine varieties,nine candidate genes(VviDEADRH10c,-13,-22,-25a,-25b,-33,-34,-36,and-39)were screened based on expression profiling data.Combined with qRTPCR results,Vvi DEADRH25a was selected for functional verification.Heterologous overexpression of Vvi DEADRH25a in Arabidopsis showed the transgenic plants were more sensitive to drought stress than the control.Both electrolyte permeability and malondialdehyde content were significantly increased in transgenic plants,whereas the chlorophyll content and superoxide dismutase(SOD),peroxidase(POD),catalase(CAT),and ascorbate peroxidase(APX)enzyme activities were significantly decreased.Furthermore,VviDEADRH25a-overexpressing plants showed down-regulated expression levels of several drought stress-related marker genes,namely At COR15a,At RD29A,At ERD15,and At P5CS1,which indicated that they participated in the drought stress response.In summary,this study provides new insights into the structure,evolution,and participation of DEAD-box RNA helicase genes in the response to drought stress in grapevines.
基金Chongqing Science Fund for Distinguished Young Scholars(No.CSTB2022NSCQJQX0032)Chongqing University Innovation Research Group Project(No.CXQT21011)+2 种基金Chongqing Medical University Youth Innovation in Future Medicine(No.W0156)the National Natural Science Foundation of China(No.82200123)Natural Science Foundation of Chongqing,China,(No.CSTB2023NSCQ-MSX0280).
文摘Hematopoiesis represents a meticulously regulated and dynamic biological process.Genetic aberrations affecting blood cells,induced by various factors,frequently give rise to hematological tumors.These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events,including RNA alternative splicing,RNA localization,RNA degradation,and storage.Notably,post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis.The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors,intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing,RNA modification,and ribosome assembly.This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEADBox RNA helicases in malignant hematopoiesis.Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system.
基金supported through the Natural Science Foundation of Jiangsu Province(No.BK20201172)the Key Project of the Jiangsu Health Commission(No.ZDB2020016)the Jiangsu Province Key Research and Development Program:Social Development Project(No.BE2021653).
文摘This investigation aimed to unveil new prospective diagnosis-related biomarkers together with treatment targets against glioblastoma.Methods:The expression levels of long non-coding RNA(lncRNA)DPP10-AS1 were assessed using real-time quantitative polymerase chain reaction(RT-qPCR)within both the patient tissue specimens and glioblastoma cell lines.The relationship between lncRNA DPP10-AS1 expression in glioblastoma and patient prognosis was investigated.Cell Counting Kit-8(CCK-8),transwell,and clonogenic experiments were utilized to assess tumor cells’proliferation,invasiveness,and migratory potentials after lncRNA DPP10-AS1 expression was up or down-regulated.Using an online bioinformatics prediction tool,the intracellular localization of lncRNA DPP10-AS1 and its target miRNA were predicted,and RNA-FISH verified results.A dual-luciferase reporter experiment validated the relationship across miR-24-3p together with lncRNA DPP10-AS1.MiR-24-3p expression within glioblastoma was identified through RT-qPCR,and potential link across miR-24-3p and lncRNA DPP10-AS1 was assessed using Pearson correlation analysis.Moreover,influence from lncRNA DPP10-AS1/miR-24-3p axis upon glioblastoma cell progression was assessed in vivo via a subcutaneous xenograft tumor model.Results:The expression of lncRNA DPP10-AS1 was notably reduced in both surgical specimens of glioblastoma and the equivalent cell lines.Low level of lncRNA DPP10-AS1 in glioblastoma is following poor prognosis.The downregulation of lncRNA DPP10-AS1 in glioblastoma cells resulted in enhanced cellular proliferation,migration,and invasion capabilities,accompanied by downregulated E-cadherin and upregulated vimentin and N-cadherin.Additionally,the observed upregulation of lncRNA DPP10-AS1 demonstrated a substantial inhibitory function upon proliferation,invasion,and migratory capabilities of LN229 cells.Subcellular localization disclosed that lncRNA DPP10-AS1 had a binding site that interacted with miR-24-3p.Upregulated miR-24-3p was detected in glioblastomas,displaying an inverse correlation with lncRNA DPP10-AS1 expression.MiR-24-3p downstream target has been determined as chromodomain helicase DNA binding protein 5(CHD5).LncRNA DPP10-AS1 affected the invasion and proliferation of glioblastoma by controlling the miR-24-3p/CHD5 axis.Conclusion:The present study demonstrated that lncRNA DPP10-AS1 can inhibit the invasive,migratory,and proliferative properties of glioblastoma by regulating the miR-24-3p/CHD5 signaling pathway.Consequently,lncRNA DPP10-AS1 has potential as a tumor suppressor and might be utilized for accurate diagnosis and targeted treatments of glioblastomas.
基金supported by the Department of Science and Technology(Nano Mission:DST/NM/NT/2018/105(G),SERB:EMR/2017/000992/HS&EMR/2017/001183),CSIR(FBR Project#31-2(274)2020-21),Govt.of India.
文摘In the era of advancement,the entire world continues to remain baffled by the increased rate of progression of cancer.There has been an unending search for novel thera-peutic targets and prognostic markers to curb the oncogenic scenario.The DEAD-box RNA he-licases are a large family of proteins characterized by their evolutionary conserved D-E-A-D(Asp-Glu-Ala-Asp)domain and merit consideration in the oncogenic platform.They perform multidimensional functions in RNA metabolism and also in the pathology of cancers.Their bio-logical role ranges from ribosome biogenesis,RNA unwinding,splicing,modification of second-ary and tertiary RNA structures to acting as transcriptional coactivators/repressors of various important oncogenic genes.They also play a crucial role in accelerating oncogenesis by pro-moting cell proliferation and metastasis.DDX5(p68)is one of the archetypal members of this family of proteins and has gained a lot of attention due to its oncogenic attribute.It is found to be overexpressed in major cancer types such as colon,brain,breast,and prostate cancer.It exhibits its multifaceted nature by not only coactivating genes implicated in cancers but also mediating crosstalk across major signaling pathways in cancer.Therefore,in this review,we aim to illustrate a comprehensive overview of DEAD-box RNA helicases especially p68 by focusing on their multifaceted roles in different cancers and the various signaling pathways affected by them.Further,we have also briefly discoursed the therapeutic interventional approaches with the DEAD-box RNA helicases as the pharmacological targets for designing in-hibitors to pave way for cancer therapy.
基金supported by grants from the National Natural Science Foundation of China (Nos. 31302106, 31260616, and 31602035)the National Key Research and Development Program of China (Nos. 2016YFD0500901 and 2017YFD0500903)
文摘Foot-and-mouth disease virus(FMDV)can infect domestic and wild cloven-hoofed animals.The non-structural protein 3D plays an important role in FMDV replication and pathogenesis.However,the interaction partners of 3D,and the effects of those interactions on FMDV replication,remain incompletely elucidated.In the present study,using the yeast two-hybrid system,we identified a porcine cell protein,DEAD-box RNA helicase 1(DDX1),which interacted with FMDV 3D.The DDX1-3D interaction was further confirmed by co-immunoprecipitation experiments and an indirect immunofluorescence assay(IFA)in porcine kidney 15(PK-15)cells.DDX1 was reported to either inhibit or facilitate viral replication and regulate host innate immune responses.However,the roles of DDX1 during FMDV infection remain unclear.Our results revealed that DDX1 inhibited FMDV replication in an ATPase/helicase activity-dependent manner.In addition,DDX1 stimulated IFN-p activation in FMDV-infected cells.Together,our results expand the body of knowledge regarding the role of DDX1 in FMDV infection.