Raman spectra of undoped GaN and Mg-doped GaN films grown by metal-organic chemical-vapor deposition on sapphire are investigated between 78 and 573K.A peak at 247cm -1 is observed in both Raman spectra of GaN and Mg-...Raman spectra of undoped GaN and Mg-doped GaN films grown by metal-organic chemical-vapor deposition on sapphire are investigated between 78 and 573K.A peak at 247cm -1 is observed in both Raman spectra of GaN and Mg-doped GaN.It is suggested that the defect-induced scattering is origin of the mode.The electronic Raman scattering mechanism and Mg-related local vibrational mode are excluded.Furthermore,the differences of E_2 and A_1(LO) modes in two samples are also discussed.The stress relaxation is observed in Mg-doped GaN.展开更多
This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bl...This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bloch modes which are excited from the extended photonie band-gap structure at Bloch wave-numbers with kx = 0. The DMs for both positive and negative defects are considered in this method.展开更多
Wave propagation is studied in structures consisting of alternate left- and right-handed layers. Bragg gap and zero-n gap appear in different frequency regions of the structure. The periodicity of the structure is bro...Wave propagation is studied in structures consisting of alternate left- and right-handed layers. Bragg gap and zero-n gap appear in different frequency regions of the structure. The periodicity of the structure is broken by simply reversing the order of the layers in one half of the structure, resulting in defect modes located inside the zero-n gap and Bragg gap. These modes can be made very narrow by adding more layers in the structure. The defect mode located inside the zero-n gap is sensitive to the symmetry of the structure and insensitive to the angle of incidence of the incoming radiation. Multiple modes are also generated inside the gaps by repeating the structural pattern. Thus, a simple structure can be used for single and multiple modes that are imDortant for different applications.展开更多
The multi-modes and disperse characteristics of torsional modes in pipes are investigated theoretically and experimentally. At all frequencies, both phase velocity and group velocity of the lowest torsional mode T(0,...The multi-modes and disperse characteristics of torsional modes in pipes are investigated theoretically and experimentally. At all frequencies, both phase velocity and group velocity of the lowest torsional mode T(0,1) are constant and equal to shear wave velocity. T(0,1) mode at all frequencies is the fastest torsional mode. In the experiments, T(0,1) mode is excited and received in pipes using 9 thickness shear vibration mode piezoelectric ceramic elements. Furthermore, an artificial longitudinal defect of a 4 m long pipe is detected using T(0,1) mode at 50 kHz. Experimental results show that it is feasible for longitudinal defect detection in pipes using T(0,1) mode of ultrasonic guided waves.展开更多
Employing the characteristic matrix method, this study investigates transmission properties of onedimensional defective lossy photonic crystals composed of negative and positive refractive index layers with one lossle...Employing the characteristic matrix method, this study investigates transmission properties of onedimensional defective lossy photonic crystals composed of negative and positive refractive index layers with one lossless defect layer at the center of the crystal. The results of the study show that as the refractive index and thickness of the defect layer increase, the frequency of the defect mode decreases. In addition, the study shows that the frequency of the defect mode is sensitive to the incidence angle, polarization, and physical properties of the defect layer, but it is insensitive to the small lattice loss factor. The peak of the defect mode is very sensitive to the loss factor, incidence angle, polarization, refractive index, and thickness of the defect layer. This study also shows that the peak and the width of the defect mode are affected by the numbers of the lattice period and the loss factor. The results can lead to designing new types of narrow filter structures and other optical devices.展开更多
Based on finite-difference time-domain(FDTD) method,the wave propagation and localization in two-dimensional defect-containing piezoelectric phononic crystals are investigated when the mechanical-electrical coupling i...Based on finite-difference time-domain(FDTD) method,the wave propagation and localization in two-dimensional defect-containing piezoelectric phononic crystals are investigated when the mechanical-electrical coupling is taken into account.The characteristics of localized defect modes are studied,and the effects of the number and direction of defects on the defect modes and transmission coefficients are discussed.Numerical results of defect modes and transmission coefficients are presented for BaTiO3/polymer piezocomposite,and from which we can see that the number and direction of defects have pronounced effects on the defect modes and transmission coefficients.The results also show the existence of elastic wave localization in piezoelectric phononic crystals containing defects.展开更多
A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of...A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of spectral gaps equals to the modulation factor,which is consistent with previous studies.For a periodic system with local defects introduced by the boundary conditions,it shows that the conducting-mesh-induced DGM is always well confined by spectral gaps while the conducting-sleeve-induced DGM is not.The defect location can be a useful tool to dynamically control the frequency and spatial periodicity of DGM inside spectral gaps.This controllability can be potentially applied to the interaction between gap eigenmodes and energetic particles in fusion plasmas,and optical microcavities and waveguides in photonic crystals.展开更多
We study theoretically the nonlinear responses of one-dimensional photonic crystals (PCs) composed of alternating two kinds of single-negative (permittivity-negative and permeability-negative) materials embedded w...We study theoretically the nonlinear responses of one-dimensional photonic crystals (PCs) composed of alternating two kinds of single-negative (permittivity-negative and permeability-negative) materials embedded with a Kerrtype nonlinear defect layer. In conventional PCs, it is difficult to realize a bistable switching with both low threshold and quick response time. However, in PCs with single-negative materials, by changing the ratio of the thicknesses of the two types of layers, with the decreasing size of the structure, the switching response time is shortened and the threshold intensity decreases simultaneously.展开更多
An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of...An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide. In the cavity, laser resonance in the inner structure benefits from not only the anomalous dispersion characteristic of the first band-edge at the M point in the first Brillouin-zone but also zero photon states in the outer structure. A line defect waveguide is introduced in the outer structure for extracting photons from the inner cavity. Three-dimensional finite-difference time-domain simulations apparently show the in-plane laser output from the waveguide. The microcavity has an effective mode volume of about 3.2(λ/nslab)^3 for oscillation mode and the quality factor of the device including line defect waveguide is estimated to be as high as 1300.展开更多
Optical features of a semiconductor–dielectric photonic crystal are studied theoretically. Alternating layers of micrometer sized SiO2/In Sb slabs are considered as building blocks of the proposed ideal crystal. By i...Optical features of a semiconductor–dielectric photonic crystal are studied theoretically. Alternating layers of micrometer sized SiO2/In Sb slabs are considered as building blocks of the proposed ideal crystal. By inserting additional layers and disrupting the regularity, two more defective crystals are also proposed. Photonic band structure of the ideal crystal and its dependence on the structural parameters are explored at the first step. Transmittance of the defective crystals and its changes with the thicknesses of the layers are studied. After extracting the optimum values for the thicknesses of the unit cells of the crystals, the optical response of the proposed structures at different temperatures and incident angles are investigated. Changes of the defect layers’ induced mode(s) are discussed by taking into consideration of the temperature dependence of the In Sb layer permittivity. The results clearly reflect the high potential of the proposed crystals to be used at high temperature terahertz technology as a promising alternative to their electronic counterparts.展开更多
Inelastic incoherent neutron scattering spectra of D2O high-density amorphous (hda) ice, ice-Ⅷ and ice-Ⅱ mixed with small amount of H2O ((5%) have been measured recently on high-energy transfer spectrometer at ...Inelastic incoherent neutron scattering spectra of D2O high-density amorphous (hda) ice, ice-Ⅷ and ice-Ⅱ mixed with small amount of H2O ((5%) have been measured recently on high-energy transfer spectrometer at Rutherford Appleton Laboratory (UK). The hydrogen atom on D2O ice lattices has three distinguished vibrational modes, two bending at low frequencies and one stretching at high frequencies, and their frequencies are slightly different for different phases of ice. It was found that the lower one of the bending modes is located at -95 meⅤ for hda-ice, at -95 meⅤ for ice-Ⅷ and at -96 meⅤ for ice-Ⅱ and they are all lower than the value of 104 meⅤ for ice-Ih. It was also measured that the O-D and O-H covalent bond stretching modes of ice-Ⅷ are at -315 and -425 meⅤ, ice-Ⅱ at 307 and -415 meⅤ, hda-ice at 312 and -418 meⅤ, respectively. They are significantly higher than the values of ice-Ih at -299 and -406 meⅤ, respectively.展开更多
By means of a transfer matrix method, this paper deduces the transmittance calculation equation of light travelling in locally doped (including one defect layer) mirror heterostructure (ABCCBA)PD(ABCCBA)q photon...By means of a transfer matrix method, this paper deduces the transmittance calculation equation of light travelling in locally doped (including one defect layer) mirror heterostructure (ABCCBA)PD(ABCCBA)q photonic crystals. In the cases of defect layers being either introduced or not introduced, an ORIGIN simulation shows the influence of incident angle change on the number of photon band gap, bandwidth and defect mode numbers. Studies indicate that when such photonic crystals have 8 mirror cycles and the thickness of defect layer D meets nDdD = X0/2 or nodD = 4)~0, the photonic crystal defect mode transmission peak changes significantly. Also, with the change of incident angle, the number of defect mode transmission peaks changes. By altering incident angle and defect layer thickness, we can get photon band gaps and defect mode transmission peaks at different frequency domains and different relative angular frequencies. This provides theoretical reference for achieving light wave multi-channel filtering and tunable filtering.展开更多
We have designed an air-bridged PhC microcavity with high sensitivity and a high quality factor.The structure parameters of the microcavity are optimized by three-dimensional finite-difference time-domain method. We c...We have designed an air-bridged PhC microcavity with high sensitivity and a high quality factor.The structure parameters of the microcavity are optimized by three-dimensional finite-difference time-domain method. We compare the performance of a silicon-on-insulator PhC microcavity and an air-bridged PhC microcavity,and analyze the effect of the thickness of the slab and the radius of the defect hole on the performance of the air-bridged PhC microcavity.For a thinner slab and a larger defect hole,the sensitivity is higher while the quality factor is lower.For the air-bridged photonic crystal slab,the sensitivity can reach 320-nm/RIU(refractive index unit) while the quality factor keeps a relatively high value of 120 by selecting the proper slab thickness and the defect hole radius,respectively,when the refractive index is 1.33.This is meaningful for low-detection-limit biosensing.展开更多
The Fabry-Perot resonator (FPR) antenna has found wide applications in microwave and millimeter waves and recently attracted considerable interest. In this paper, a summary of planar and cylindrical structures, analyt...The Fabry-Perot resonator (FPR) antenna has found wide applications in microwave and millimeter waves and recently attracted considerable interest. In this paper, a summary of planar and cylindrical structures, analytic models and research development is presented, and a comparison between these structures and analytic models is made, showing that such analytic models as the FP cavity mode, electromagnetic band gap (EBG) defect mode, transmission line mode, and leaky-wave mode are consistent when applied to analyze this type of resonator antenna. Some interesting topics under recent research, including dual or multi-band, improvement of gain bandwidth, low profile and beam control, are surveyed.展开更多
文摘Raman spectra of undoped GaN and Mg-doped GaN films grown by metal-organic chemical-vapor deposition on sapphire are investigated between 78 and 573K.A peak at 247cm -1 is observed in both Raman spectra of GaN and Mg-doped GaN.It is suggested that the defect-induced scattering is origin of the mode.The electronic Raman scattering mechanism and Mg-related local vibrational mode are excluded.Furthermore,the differences of E_2 and A_1(LO) modes in two samples are also discussed.The stress relaxation is observed in Mg-doped GaN.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10674038 and 10604042)the National Basic Research Program of China (Grant No. 2006CB302901)
文摘This paper stuides numerically the model equation in a one dimensional defective photonic lattice by modifying the potential function to a periodic function. It is found that defect modes (DMs) can be regarded as Bloch modes which are excited from the extended photonie band-gap structure at Bloch wave-numbers with kx = 0. The DMs for both positive and negative defects are considered in this method.
文摘Wave propagation is studied in structures consisting of alternate left- and right-handed layers. Bragg gap and zero-n gap appear in different frequency regions of the structure. The periodicity of the structure is broken by simply reversing the order of the layers in one half of the structure, resulting in defect modes located inside the zero-n gap and Bragg gap. These modes can be made very narrow by adding more layers in the structure. The defect mode located inside the zero-n gap is sensitive to the symmetry of the structure and insensitive to the angle of incidence of the incoming radiation. Multiple modes are also generated inside the gaps by repeating the structural pattern. Thus, a simple structure can be used for single and multiple modes that are imDortant for different applications.
基金This project is supported by National Natural Science Foundation of China(No. 10272007, No.60404017, No.10372009)Municipal Natural Science Foundation of Beijing, Clina(No.4052008).
文摘The multi-modes and disperse characteristics of torsional modes in pipes are investigated theoretically and experimentally. At all frequencies, both phase velocity and group velocity of the lowest torsional mode T(0,1) are constant and equal to shear wave velocity. T(0,1) mode at all frequencies is the fastest torsional mode. In the experiments, T(0,1) mode is excited and received in pipes using 9 thickness shear vibration mode piezoelectric ceramic elements. Furthermore, an artificial longitudinal defect of a 4 m long pipe is detected using T(0,1) mode at 50 kHz. Experimental results show that it is feasible for longitudinal defect detection in pipes using T(0,1) mode of ultrasonic guided waves.
文摘Employing the characteristic matrix method, this study investigates transmission properties of onedimensional defective lossy photonic crystals composed of negative and positive refractive index layers with one lossless defect layer at the center of the crystal. The results of the study show that as the refractive index and thickness of the defect layer increase, the frequency of the defect mode decreases. In addition, the study shows that the frequency of the defect mode is sensitive to the incidence angle, polarization, and physical properties of the defect layer, but it is insensitive to the small lattice loss factor. The peak of the defect mode is very sensitive to the loss factor, incidence angle, polarization, refractive index, and thickness of the defect layer. This study also shows that the peak and the width of the defect mode are affected by the numbers of the lattice period and the loss factor. The results can lead to designing new types of narrow filter structures and other optical devices.
基金Sponsored by the National Natural Science Foundation of China(Grant No.10672017 and 10632020)the China Postdoctoral Science Foundation+1 种基金Heilongjiang Province Postdoctoral Science FoundationJapan Society for the Promotion of Science(JSPS)
文摘Based on finite-difference time-domain(FDTD) method,the wave propagation and localization in two-dimensional defect-containing piezoelectric phononic crystals are investigated when the mechanical-electrical coupling is taken into account.The characteristics of localized defect modes are studied,and the effects of the number and direction of defects on the defect modes and transmission coefficients are discussed.Numerical results of defect modes and transmission coefficients are presented for BaTiO3/polymer piezocomposite,and from which we can see that the number and direction of defects have pronounced effects on the defect modes and transmission coefficients.The results also show the existence of elastic wave localization in piezoelectric phononic crystals containing defects.
基金supported by National Natural Science Foundation of China(No.11405271)
文摘A one dimensional model is developed for defective gap mode(DGM)with two types of boundary conditions:conducting mesh and conducting sleeve.For a periodically modulated system without defect,the normalized width of spectral gaps equals to the modulation factor,which is consistent with previous studies.For a periodic system with local defects introduced by the boundary conditions,it shows that the conducting-mesh-induced DGM is always well confined by spectral gaps while the conducting-sleeve-induced DGM is not.The defect location can be a useful tool to dynamically control the frequency and spatial periodicity of DGM inside spectral gaps.This controllability can be potentially applied to the interaction between gap eigenmodes and energetic particles in fusion plasmas,and optical microcavities and waveguides in photonic crystals.
基金Supported by the National Basic Research Programme of China under Grant No 2006CB921701, the National Natural Science Foundation of China under Grant Nos 10634050 and 10704055, and the Shanghai Science and Technology Committee.
文摘We study theoretically the nonlinear responses of one-dimensional photonic crystals (PCs) composed of alternating two kinds of single-negative (permittivity-negative and permeability-negative) materials embedded with a Kerrtype nonlinear defect layer. In conventional PCs, it is difficult to realize a bistable switching with both low threshold and quick response time. However, in PCs with single-negative materials, by changing the ratio of the thicknesses of the two types of layers, with the decreasing size of the structure, the switching response time is shortened and the threshold intensity decreases simultaneously.
文摘An edge emitting laser based on two-dimensional photonic crystal slabs is proposed. The device consists of a square lattice microcavity, which is composed of two structures with the same period but different radius of air-holes, and a waveguide. In the cavity, laser resonance in the inner structure benefits from not only the anomalous dispersion characteristic of the first band-edge at the M point in the first Brillouin-zone but also zero photon states in the outer structure. A line defect waveguide is introduced in the outer structure for extracting photons from the inner cavity. Three-dimensional finite-difference time-domain simulations apparently show the in-plane laser output from the waveguide. The microcavity has an effective mode volume of about 3.2(λ/nslab)^3 for oscillation mode and the quality factor of the device including line defect waveguide is estimated to be as high as 1300.
文摘Optical features of a semiconductor–dielectric photonic crystal are studied theoretically. Alternating layers of micrometer sized SiO2/In Sb slabs are considered as building blocks of the proposed ideal crystal. By inserting additional layers and disrupting the regularity, two more defective crystals are also proposed. Photonic band structure of the ideal crystal and its dependence on the structural parameters are explored at the first step. Transmittance of the defective crystals and its changes with the thicknesses of the layers are studied. After extracting the optimum values for the thicknesses of the unit cells of the crystals, the optical response of the proposed structures at different temperatures and incident angles are investigated. Changes of the defect layers’ induced mode(s) are discussed by taking into consideration of the temperature dependence of the In Sb layer permittivity. The results clearly reflect the high potential of the proposed crystals to be used at high temperature terahertz technology as a promising alternative to their electronic counterparts.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 10274034 and 10474085), and the Scientific Research Foundation for the Returned 0verseas Chinese Scholars, State Education Ministry, China.
文摘Inelastic incoherent neutron scattering spectra of D2O high-density amorphous (hda) ice, ice-Ⅷ and ice-Ⅱ mixed with small amount of H2O ((5%) have been measured recently on high-energy transfer spectrometer at Rutherford Appleton Laboratory (UK). The hydrogen atom on D2O ice lattices has three distinguished vibrational modes, two bending at low frequencies and one stretching at high frequencies, and their frequencies are slightly different for different phases of ice. It was found that the lower one of the bending modes is located at -95 meⅤ for hda-ice, at -95 meⅤ for ice-Ⅷ and at -96 meⅤ for ice-Ⅱ and they are all lower than the value of 104 meⅤ for ice-Ih. It was also measured that the O-D and O-H covalent bond stretching modes of ice-Ⅷ are at -315 and -425 meⅤ, ice-Ⅱ at 307 and -415 meⅤ, hda-ice at 312 and -418 meⅤ, respectively. They are significantly higher than the values of ice-Ih at -299 and -406 meⅤ, respectively.
基金supported by the National Natural Science Foundation of China(Nos.60776062,50730009)
文摘By means of a transfer matrix method, this paper deduces the transmittance calculation equation of light travelling in locally doped (including one defect layer) mirror heterostructure (ABCCBA)PD(ABCCBA)q photonic crystals. In the cases of defect layers being either introduced or not introduced, an ORIGIN simulation shows the influence of incident angle change on the number of photon band gap, bandwidth and defect mode numbers. Studies indicate that when such photonic crystals have 8 mirror cycles and the thickness of defect layer D meets nDdD = X0/2 or nodD = 4)~0, the photonic crystal defect mode transmission peak changes significantly. Also, with the change of incident angle, the number of defect mode transmission peaks changes. By altering incident angle and defect layer thickness, we can get photon band gaps and defect mode transmission peaks at different frequency domains and different relative angular frequencies. This provides theoretical reference for achieving light wave multi-channel filtering and tunable filtering.
基金Project supported by the National Natural Science Foundation of China(Nos.60736037,60978067,60807010)the State Key Development Program for Basic Research of China(Nos.2009CB320300,2010CB934104)
文摘We have designed an air-bridged PhC microcavity with high sensitivity and a high quality factor.The structure parameters of the microcavity are optimized by three-dimensional finite-difference time-domain method. We compare the performance of a silicon-on-insulator PhC microcavity and an air-bridged PhC microcavity,and analyze the effect of the thickness of the slab and the radius of the defect hole on the performance of the air-bridged PhC microcavity.For a thinner slab and a larger defect hole,the sensitivity is higher while the quality factor is lower.For the air-bridged photonic crystal slab,the sensitivity can reach 320-nm/RIU(refractive index unit) while the quality factor keeps a relatively high value of 120 by selecting the proper slab thickness and the defect hole radius,respectively,when the refractive index is 1.33.This is meaningful for low-detection-limit biosensing.
基金Project (Nos. 60671016 and 60621002) supported by the National Natural Science Foundation of China
文摘The Fabry-Perot resonator (FPR) antenna has found wide applications in microwave and millimeter waves and recently attracted considerable interest. In this paper, a summary of planar and cylindrical structures, analytic models and research development is presented, and a comparison between these structures and analytic models is made, showing that such analytic models as the FP cavity mode, electromagnetic band gap (EBG) defect mode, transmission line mode, and leaky-wave mode are consistent when applied to analyze this type of resonator antenna. Some interesting topics under recent research, including dual or multi-band, improvement of gain bandwidth, low profile and beam control, are surveyed.