二维数字图像相关(two-dimensional digital image correlation,2D-DIC)在测量过程中不可避免地会出现相机光轴与测量表面非垂直,由此产生的离面位移而将导致较大的测量误差,同时在视场受限的环境中难以通过单台相机完成大范围的变形测...二维数字图像相关(two-dimensional digital image correlation,2D-DIC)在测量过程中不可避免地会出现相机光轴与测量表面非垂直,由此产生的离面位移而将导致较大的测量误差,同时在视场受限的环境中难以通过单台相机完成大范围的变形测量。有鉴于此,该文开发了基于双反射镜的2D-DIC变形测量系统,使用双反射镜成像缓解离面运动对2D-DIC的影响,通过可移动相机实现小视场下的图像采集,提出基于频域移位的高精度图像拼接方法,并改进了融合函数,最终获得试样的高分辨率图像。单轴拉伸实验结果表明,轴向应变的平均相对误差相比传统2D-DIC方法降低12.82%,测量分辨率提高约34.92%,验证了测量系统的可行性和有效性。展开更多
Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an a...Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems.展开更多
文摘二维数字图像相关(two-dimensional digital image correlation,2D-DIC)在测量过程中不可避免地会出现相机光轴与测量表面非垂直,由此产生的离面位移而将导致较大的测量误差,同时在视场受限的环境中难以通过单台相机完成大范围的变形测量。有鉴于此,该文开发了基于双反射镜的2D-DIC变形测量系统,使用双反射镜成像缓解离面运动对2D-DIC的影响,通过可移动相机实现小视场下的图像采集,提出基于频域移位的高精度图像拼接方法,并改进了融合函数,最终获得试样的高分辨率图像。单轴拉伸实验结果表明,轴向应变的平均相对误差相比传统2D-DIC方法降低12.82%,测量分辨率提高约34.92%,验证了测量系统的可行性和有效性。
基金Project supported by the National Natural Scinece Foundation of China(Grant Nos.11671219,11871446,12071304,and 12071451).
文摘Within the(2+1)-dimensional Korteweg–de Vries equation framework,new bilinear B¨acklund transformation and Lax pair are presented based on the binary Bell polynomials and gauge transformation.By introducing an arbitrary functionφ(y),a family of deformed soliton and deformed breather solutions are presented with the improved Hirota’s bilinear method.By choosing the appropriate parameters,their interesting dynamic behaviors are shown in three-dimensional plots.Furthermore,novel rational solutions are generated by taking the limit of the obtained solitons.Additionally,twodimensional(2D)rogue waves(localized in both space and time)on the soliton plane are presented,we refer to them as deformed 2D rogue waves.The obtained deformed 2D rogue waves can be viewed as a 2D analog of the Peregrine soliton on soliton plane,and its evolution process is analyzed in detail.The deformed 2D rogue wave solutions are constructed successfully,which are closely related to the arbitrary functionφ(y).This new idea is also applicable to other nonlinear systems.