期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
DEM Simulation to Determine the Influence on the Experimental Results of Tests of Iron Pellets When the Dimensions of the Test Device Are Varied 被引量:1
1
作者 Yerko Aguilera-Carvajal Yonathan Tapia Robledo Sebastián Perez Cortes 《International Journal of Modern Nonlinear Theory and Application》 2021年第2期65-80,共16页
The current study is based on the DEM computer simulation of three experimental test devices with different dimensions to determine the difference in the results of the formation of shear and repose angles that the pa... The current study is based on the DEM computer simulation of three experimental test devices with different dimensions to determine the difference in the results of the formation of shear and repose angles that the particles experience when grouped under the action of the gravitational force. In this respect, the experimental test devices with different height, width, and depth were geometrically modeled with iron pellet particles using morphology and a granulometric variation from 6 mm to 9 mm of equivalent diameter in its spherical shape. Depending on the results obtained, a reliable size of the experimental test device will be available to obtain the necessary data for a correct adjustment of the calibration parameters for the DEM simulation of mining-metallurgical processes that use granulated material of iron pellet. 展开更多
关键词 Discrete Elements Method Calibration Test Device dem parameters
下载PDF
DEM investigation of weathered rocks using a novel bond contact model 被引量:1
2
作者 Zhenming Shi Tao Jiang +2 位作者 Mingjing Jiang Fang Liu Ning Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第3期327-336,共10页
The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the... The distinct element method(DEM) incorporated with a novel bond contact model was applied in this paper to shed light on the microscopic physical origin of macroscopic behaviors of weathered rock, and to achieve the changing laws of microscopic parameters from observed decaying properties of rocks during weathering. The changing laws of macroscopic mechanical properties of typical rocks were summarized based on the existing research achievements. Parametric simulations were then conducted to analyze the relationships between macroscopic and microscopic parameters, and to derive the changing laws of microscopic parameters for the DEM model. Equipped with the microscopic weathering laws, a series of DEM simulations of basic laboratory tests on weathered rock samples was performed in comparison with analytical solutions. The results reveal that the relationships between macroscopic and microscopic parameters of rocks against the weathering period can be successfully attained by parametric simulations. In addition, weathering has a significant impact on both stressestrain relationship and failure pattern of rocks. 展开更多
关键词 Distinct element method(dem Bond contact model Rock weathering Weathering law Microscopic parameter
下载PDF
Friction Coefficient Calibration of Sunflower Seeds for Discrete Element Modeling Simulation
3
作者 Shuai Wang Zhihong Yu +2 位作者 Wenjie Zhang Dongxu Zhao Aorigele 《Phyton-International Journal of Experimental Botany》 SCIE 2022年第11期2559-2582,共24页
Sunflower(Helianthus annuus L.)is one of the four major oil crops in the world and has high economic value.However,the lack of discrete element method(DEM)models and parameters for sunflower seeds hinders the applicat... Sunflower(Helianthus annuus L.)is one of the four major oil crops in the world and has high economic value.However,the lack of discrete element method(DEM)models and parameters for sunflower seeds hinders the application of DEM for computer simulation in the key working processes of sunflower seed sowing and harvesting.The present study was conducted on two varieties of sunflower,and the DEM model of sunflower seeds was established by using 3D scanning technology based on the distribution of triaxial dimensions and volumes of the geometric model of sunflower seeds.Similarly,the physical characteristics parameters of sunflower seeds were determined by physical tests and the simulation parameters were screened for significance based on the Plackett-Burman test.Our results show that the coefficient of static friction between sunflower seeds and the coefficient of rolling friction have significant effects on the repose angle of the simulation test.Furthermore,the optimal range of the significance parameters was further determined by the steepest climb test,and the second-order regression model of the significance parameters and the repose angle was obtained according to the Box-Behnken design test and Response Surface Methodology(RSM),with the repose angle measured by the physical test as the optimized target value to obtain the optimal parameter combination.Finally,a two-sample t-test for the repose angle of the physical test and the repose angle of the simulation test yielded P>0.05.Our results confirms that the repose angle obtained from simulation is not significantly different from the physical test value,and the relative errors between the repose angle of the simulation test and the physical test are 1.43%and 0.40%,respectively,for the optimal combination of parameters.Based on these results it can be concluded that the optimal parameters obtained from the calibration can be used for DEM simulation experiments related to the sunflower seed sowing and harvesting process. 展开更多
关键词 Sunflower seeds repose angle response surface methodology simulation model dem parameter calibration
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部