As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and ...As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.展开更多
Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the w...Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.展开更多
The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position obser...The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.展开更多
Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipp...Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipped with doubly-fed induction generators differ fundamentally from synchronous generators.Therefore,more considerations are needed to analyze the performances of the distance protection relays.The protection of a wind farm with distance relay is inspected.By changing the conditions of the wind farm,the characteristics of the distance relay are studied.展开更多
A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient volt...A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.展开更多
Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supp...Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.展开更多
To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a syn...To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.展开更多
This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction g...This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction generator-based variable-speed wind turbine by controlling the rotor current. In the first step, a maximum power point tracking technique is used to extract the maximum power from theturbine. Then a stator-flux-oriented vector control strategy is employed to control the rotor-side current. Subsequently, a grid voltagevector-oriented control strategy is used to control the grid-side system of the grid-connected generator. Considering the nonlinearityand parameter uncertainty of the system, an active disturbance rejection controller with a sliding-mode-based extended-state observeris developed for the above-mentioned control strategies. Furthermore, the stability of the controller is tested and the performance of thecontroller is compared with the classical proportional-integral controller based on disturbance rejection, robustness and tracking capability in a highly non-linear wind speed variation scenario. Modelling, control and comparison are conducted in the MATLAB®/Simulink®environment. Finally, a real-time hardware set-up is presented using the dSPACE ds-1104 R&D processing board to validate the controlscheme. From the result of the experiments, it is seen that the proposed controller takes 10-15 control cycles to settle to its steady-statevalues, depending on the control loop, whereas the conventional proportional-integral controller takes 60-75 control cycles. As a result,the settling time for the proposed control scheme is shorter than that of the proportional-integral controller.展开更多
In this paper, we present the steady state analysis of a double-fed induction generator (DFIG) adopted for wind power generation. The three-phase induction machine connected to the network, to work as a generator for ...In this paper, we present the steady state analysis of a double-fed induction generator (DFIG) adopted for wind power generation. The three-phase induction machine connected to the network, to work as a generator for wind farms, is excited on the rotor circuit by a slip-frequency current injected to the rotor, from an exciter mounted on the same shaft of the machine. The resulting rotating magnetic field rotates at synchronous speed;as such the generated power has a constant frequency independent of the shaft speed. Effects of the excitation voltage magnitude and phase angle on the active and reactive power are studied, when the machine runs at constant speed. It has been shown that by controlling the excitation voltage magnitude and phase angle would control the mode of operation of the machine;motor mode or generator mode. Furthermore, the effects of the shaft speed on the active and reactive power at constant excitation voltage magnitude and constant phase angle are also investigated.展开更多
An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of D...An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method.展开更多
The brushless doubly-fed induction generator(BDFIG)presents significant potential for application in wind power systems,primarily due to the elimination of slip rings and brushes.The application of virtual synchronous...The brushless doubly-fed induction generator(BDFIG)presents significant potential for application in wind power systems,primarily due to the elimination of slip rings and brushes.The application of virtual synchronous control(VSynC)has been demonstrated to effectively augment the inertia of BDFIG systems.However,the dynamic characteristics and stability of BDFIG under weak grid conditions remain largely unexplored.The critical stabilizing factors for BDFIG-based wind turbines(WTs)are methodically investigated,and an enhanced VSynC method based on linear active disturbance rejection control(LADRC)is proposed.The stability analysis reveals that the proposed method can virtually enhance the stability of the grid-connected system under weak grid conditions.The accuracy of the theoretical analysis and the effectiveness of the proposed method are affirmed through extensive simulations and detailed experiments.展开更多
Probabilistic load flow(PLF)algorithm has been regained attention,because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system.The PLF...Probabilistic load flow(PLF)algorithm has been regained attention,because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system.The PLF algorithm is improved with introducing the power performance of double-fed induction generators(DFIGs)for wind turbines(WTs)under the constant power factor control and the constant voltage control in this paper.Firstly,the conventional Jacobian matrix of the alternating current(AC)load flow model is modified,and the probability distributions of the active and reactive powers of the DFIGs are derived by combining the power performance of the DFIGs and the Weibull distribution of wind speed.Then,the cumulants of the state variables in power grid are obtained by improved PLF model and more accurate power probability distributions.In order to generate the probability density function(PDF)of the nodal voltage,Gram-Charlier,Edgeworth and Cornish-Fisher expansions based on the cumulants are applied.Finally,the effectiveness and accuracy of the improved PLF algorithm is demonstrated in the IEEE 14-RTS system with wind power integration,compared with the results of Monte Carlo(MC)simulation using deterministic load flow calculation.展开更多
The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is t...The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.展开更多
In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more prono...In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more pronounced.This may cause the system to experience small-signal instability during the fault steady-state.In this paper,multi-paralleled doubly fed induction generator(DFIG)-based wind farms(WFs)are taken as an example to study the dynamic coupling within a multi-fed system during fault steady-state of symmetrical low voltage ride-through(LVRT)in a weak grid.The analysis reveals that the dynamic coupling between WFs will introduce a damping shift to each WF.This inevitably affects the system’s dynamic stability and brings the risk of small-signal instability during fault steady-state in LVRT scenarios.Increasing the distance to fault location and fault severity will exacerbate the dynamic coupling between WFs.Because of the dynamic coupling,adjusting the control state of one WF will affect the stability of the remaining WFs in the system.Hence,a cooperative control strategy for multi-paralleled DFIG WFs is proposed to improve dynamic stability during LVRT.The analysis and the effectiveness of the proposed control strategy are verified by modal analysis and simu-lation.展开更多
文摘As the core component of energy conversion for large wind turbines,the output performance of doubly-fed induction generators (DFIGs) plays a decisive role in the power quality of wind turbines.To realize the fast and accurate design optimization of DFIGs,this paper proposes a novel hybriddriven surrogate-assisted optimization method.It firstly establishes an accurate subdomain model of DFIGs to analytically predict performance indexes.Furthermore,taking the inexpensive analytical dataset produced by the subdomain model as the source domain and the expensive finite element analysis dataset as the target domain,a high-precision surrogate model is trained in a transfer learning way and used for the subsequent multi-objective optimization process.Based on this model,taking the total harmonic distortion of electromotive force,cogging torque,and iron loss as objectives,and the slot and inner/outer diameters as parameters for optimizing the topology,achieve a rapid and accurate electromagnetic design for DFIGs.Finally,experiments are carried out on a 3MW DFIG to validate the effectiveness of the proposed method.
基金supported by the Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology,Ministry of Education(Northeast Electric Power University),Jilin 132012,China(MPSS2023-06).
文摘Owing to their stability,doubly-fed induction generator(DFIG)integrated systems have gained considerable interest and are the most widely implemented type of wind turbines and due to the increasing escalation of the wind generation penetration rate in power systems.In this study,we investigate a DFIG integrated system comprising four modules:(1)a wind turbine that considers the maximum power point tracking and pitch-angle control,(2)induction generator,(3)rotor/grid-side converter with the corresponding control strategy,and(4)AC power grid.The detailed small-signal modeling of the entire system is performed by linearizing the dynamic characteristic equation at the steady-state value.Furthermore,a dichotomy method is proposed based on the maximum eigenvalue real part function to obtain the critical value of the parameters.Root-locus analysis is employed to analyze the impact of changes in the phase-locked loop,short-circuit ratio,and blade inertia on the system stability.Lastly,the accuracy of the small-signal model and the real and imaginary parts of the calculated dominant poles in the theoretical analysis are verified using PSCAD/EMTDC.
基金This work was supported in part by the National Natural Science Foundation of China(NSFC)under Grants 51707079 and 51877093in part by the National Key Research and Development Program of China(Project ID:YS2018YFGH000200)in part by the Fundamental Research Funds for the Central Universities(Project ID:2019kfyXMBZ031).
文摘The aim of this paper is to investigate an adaptive sensorless direct voltage control(DVC)strategy for the stand-alone ship shaft brushless doubly-fed induction generators(BDFIGs).The proposed new rotor position observer using the space vector flux relations of BDFIG may achieve the desired voltage control of the power winding(PW)in terms of magnitude and frequency,without any speed/position sensors.The proposed algorithm does not require any additional observers for obtaining the generator speed.The proposed technique can directly achieve the desired DVC based on the estimated rotor position,which may reduce the overall system cost.The stability analysis of the proposed observer is investigated and confirmed with the concept of quadratic Lyapunov function and using the multi-model representation.In addition,the sensitivity analysis of the presented method is confirmed under different issues of parameter uncertainties.Comprehensive results from both simulation and experiments are realized with a prototype wound-rotor BDFIG,which demonstrate the capability and efficacy of the proposed sensorless DVC strategy with good transient behavior under different operating conditions.Furthermore,the analysis confirms the robustness of the proposed observer via the machine parameter changes.
文摘Nowadays wind energy is the fastest growing renewable energy resource in the world.The problems of integrating wind farms are caused by changes of wind speed during a day.Moreover,the behaviors of wind turbines equipped with doubly-fed induction generators differ fundamentally from synchronous generators.Therefore,more considerations are needed to analyze the performances of the distance protection relays.The protection of a wind farm with distance relay is inspected.By changing the conditions of the wind farm,the characteristics of the distance relay are studied.
基金supported by the National Natural Science Foundation of China(Grant No.51307124)the Major Program of the National Natural Science Foundation of China(Grant No.51190105)
文摘A novel transient rotor current control scheme is proposed in this paper for a doubly-fed induction generator(DFIG)equipped with a superconducting magnetic energy storage(SMES) device to enhance its transient voltage and frequency support capacity during grid faults. The SMES connected to the DC-link capacitor of the DFIG is controlled to regulate the transient dc-link voltage so that the whole capacity of the grid side converter(GSC) is dedicated to injecting reactive power to the grid for the transient voltage support. However, the rotor-side converter(RSC) has different control tasks for different periods of the grid fault. Firstly, for Period I, the RSC injects the demagnetizing current to ensure the controllability of the rotor voltage. Then, since the dc stator flux degenerates rapidly in Period II, the required demagnetizing current is low in Period II and the RSC uses the spare capacity to additionally generate the reactive(priority) and active current so that the transient voltage capability is corroborated and the DFIG also positively responds to the system frequency dynamic at the earliest time. Finally, a small amount of demagnetizing current is provided after the fault clearance. Most of the RSC capacity is used to inject the active current to further support the frequency recovery of the system. Simulations are carried out on a simple power system with a wind farm. Comparisons with other commonly used control methods are performed to validate the proposed control method.
文摘Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.
基金the National Natural Science Foundation of China under Grant 52007071 and 51907073the China Postdoctoral Science Foundation under Grant 3004131154 and 2020M672355the Applied Basic Frontier Program of Wuhan under Grant 2020010601012207。
文摘To lower the difficulty of fault protection,a doubly-fed induction machine based shipboard propulsion system(DFIM-SPS)that is partially power decoupled is presented.In such an intrinsically safe SPS architecture,a synchronous generator(SG)is employed for power generation,and the accuracy of the parameters of power generation unit(PGU)plays an important role in SPS stable operation.In this paper,the PGU parameter deviations are studied to evaluate the effects on system performance.The models of salient-pole SG,type DC1A excitation system(EXS)and DFIM are illustrated first.Besides,the corresponding control scheme is explained.For the 16 important parameters of PGU,up to 40%of parameter deviations are applied to implement parameter sensitivity analysis.Then,simulation studies are carried out to evaluate the parameter deviation effects on system performance in detail.By defining three parameter deviation effect indicators(PDEIs),the effects on the PGU output variables,which are the terminal voltage and output active power,are studied.Moreover,the increasing rates of PDEIs with different degrees of parameter deviations for the key parameters are analyzed.Furthermore,the overall system performance is investigated for the two most influential PGU parameters.This paper provides some vital clues on SG and EXS parameter identification for DFIM-SPS.
文摘This paper aims to address the issue of control of a variable-speed wind turbine based on doubly-fed induction generators. In this work,an effort is made to extract the maximum efficiency from a doubly-fed induction generator-based variable-speed wind turbine by controlling the rotor current. In the first step, a maximum power point tracking technique is used to extract the maximum power from theturbine. Then a stator-flux-oriented vector control strategy is employed to control the rotor-side current. Subsequently, a grid voltagevector-oriented control strategy is used to control the grid-side system of the grid-connected generator. Considering the nonlinearityand parameter uncertainty of the system, an active disturbance rejection controller with a sliding-mode-based extended-state observeris developed for the above-mentioned control strategies. Furthermore, the stability of the controller is tested and the performance of thecontroller is compared with the classical proportional-integral controller based on disturbance rejection, robustness and tracking capability in a highly non-linear wind speed variation scenario. Modelling, control and comparison are conducted in the MATLAB®/Simulink®environment. Finally, a real-time hardware set-up is presented using the dSPACE ds-1104 R&D processing board to validate the controlscheme. From the result of the experiments, it is seen that the proposed controller takes 10-15 control cycles to settle to its steady-statevalues, depending on the control loop, whereas the conventional proportional-integral controller takes 60-75 control cycles. As a result,the settling time for the proposed control scheme is shorter than that of the proportional-integral controller.
文摘In this paper, we present the steady state analysis of a double-fed induction generator (DFIG) adopted for wind power generation. The three-phase induction machine connected to the network, to work as a generator for wind farms, is excited on the rotor circuit by a slip-frequency current injected to the rotor, from an exciter mounted on the same shaft of the machine. The resulting rotating magnetic field rotates at synchronous speed;as such the generated power has a constant frequency independent of the shaft speed. Effects of the excitation voltage magnitude and phase angle on the active and reactive power are studied, when the machine runs at constant speed. It has been shown that by controlling the excitation voltage magnitude and phase angle would control the mode of operation of the machine;motor mode or generator mode. Furthermore, the effects of the shaft speed on the active and reactive power at constant excitation voltage magnitude and constant phase angle are also investigated.
基金Project(2011DFA62240) supported by the International Scientific and Technological Cooperation Projects,ChinaProject(019945-SES6) supported by the European Union(EU)6th Framework Program UP-WIND Project,Denmark
文摘An analytic electromagnetic calculation method for doubly fed induction generator(DFIG) in wind turbine system was presented. Based on the operation principles, steady state equivalent circuit and basic equations of DFIG, the modeling for electromagnetic calculation of DFIG was proposed. The electromagnetic calculation of DFIG was divided into three steps: the magnetic flux calculation, parameters derivation and performance checks. For each step, the detailed numeric calculation formulas were all derived. Combining the calculation formulas, the whole electromagnetic calculation procedure was established, which consisted of three iterative calculation loops, including magnetic saturation coefficient, electromotive force and total output power. All of the electromagnetic and performance data of DIFG can be calculated conveniently by the established calculation procedure, which can be used to evaluate the new designed machine. A 1.5 MW DFIG designed by the proposed procedure was built, for which the whole type tests including no-load test, load test and temperature rising test were carried out. The test results have shown that the DFIG satisfies technical requirements and the test data fit well with the calculation results which prove the correctness of the presented calculation method.
基金supported by the National Natural Science Foundation of China(No.52077222)the Shandong Provincial Natural Science Foundation(No.ZR2023QE156)。
文摘The brushless doubly-fed induction generator(BDFIG)presents significant potential for application in wind power systems,primarily due to the elimination of slip rings and brushes.The application of virtual synchronous control(VSynC)has been demonstrated to effectively augment the inertia of BDFIG systems.However,the dynamic characteristics and stability of BDFIG under weak grid conditions remain largely unexplored.The critical stabilizing factors for BDFIG-based wind turbines(WTs)are methodically investigated,and an enhanced VSynC method based on linear active disturbance rejection control(LADRC)is proposed.The stability analysis reveals that the proposed method can virtually enhance the stability of the grid-connected system under weak grid conditions.The accuracy of the theoretical analysis and the effectiveness of the proposed method are affirmed through extensive simulations and detailed experiments.
文摘Probabilistic load flow(PLF)algorithm has been regained attention,because the large-scale wind power integration into the grid has increased the uncertainty of the stable and safe operation of the power system.The PLF algorithm is improved with introducing the power performance of double-fed induction generators(DFIGs)for wind turbines(WTs)under the constant power factor control and the constant voltage control in this paper.Firstly,the conventional Jacobian matrix of the alternating current(AC)load flow model is modified,and the probability distributions of the active and reactive powers of the DFIGs are derived by combining the power performance of the DFIGs and the Weibull distribution of wind speed.Then,the cumulants of the state variables in power grid are obtained by improved PLF model and more accurate power probability distributions.In order to generate the probability density function(PDF)of the nodal voltage,Gram-Charlier,Edgeworth and Cornish-Fisher expansions based on the cumulants are applied.Finally,the effectiveness and accuracy of the improved PLF algorithm is demonstrated in the IEEE 14-RTS system with wind power integration,compared with the results of Monte Carlo(MC)simulation using deterministic load flow calculation.
文摘The unbalanced voltages cause negative effects on the doubly fed induction generator (DFIG) sucn as torque pulsation,and increased stator current. Based on the symmetrical component theory, the torque pulsation is the consequence of the interaction of stator and rotor currents of different sequences. This paper presents a control technique to reduce the effect of unbalanced voltages on the DFIG in wind energy conversion systems. The negative sequence stator voltage is derived from the unbalanced three phase stator voltages. The compensated rotor voltage in terms of the derived negative sequence stator voltage and slip which minimizes the negative stator and rotor currents is proposed. The results from the simulation of control system with steady state model and dynamic model of the DFIG show that additional control loop with compensated voltage can significantly reduce torque and reactive power pulsations.
基金the National Natural Science Foundation of China(NSFC)(No.51977019)in part by the Joint Research Fund in Smart Grid under Cooperative Agreement between the National Natural Science Foundation of China(NSFC)(No.U1966208)State Grid Corporation of China(SGCC).
文摘In multi-fed grid-connected systems,there are complex dynamic interactions between different pieces of equipment.Particularly in situations of weak-grid faults,the dynamic coupling between equipment becomes more pronounced.This may cause the system to experience small-signal instability during the fault steady-state.In this paper,multi-paralleled doubly fed induction generator(DFIG)-based wind farms(WFs)are taken as an example to study the dynamic coupling within a multi-fed system during fault steady-state of symmetrical low voltage ride-through(LVRT)in a weak grid.The analysis reveals that the dynamic coupling between WFs will introduce a damping shift to each WF.This inevitably affects the system’s dynamic stability and brings the risk of small-signal instability during fault steady-state in LVRT scenarios.Increasing the distance to fault location and fault severity will exacerbate the dynamic coupling between WFs.Because of the dynamic coupling,adjusting the control state of one WF will affect the stability of the remaining WFs in the system.Hence,a cooperative control strategy for multi-paralleled DFIG WFs is proposed to improve dynamic stability during LVRT.The analysis and the effectiveness of the proposed control strategy are verified by modal analysis and simu-lation.