The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing mul...The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions.展开更多
Rechargeable Zn-air batteries(ZAB)have drawn extensive attention due to their eco-friendliness and safety.However,the lack of high-performance and low-cost oxygen redox reactions(OER and ORR)catalysts has become one o...Rechargeable Zn-air batteries(ZAB)have drawn extensive attention due to their eco-friendliness and safety.However,the lack of high-performance and low-cost oxygen redox reactions(OER and ORR)catalysts has become one of the main stumbling blocks in their development.Herein,we successfully fabricate a CoFe nanobubble encapsulated in nitrogen-doped carbon nanocage on wood carbon support(CoFe@NC/WC)via pyrolysis of a novel Prussian blue analog(PBA)/spruce precursor.The hierarchical CoFe@NC/WC catalyst exhibits an excellent potential difference of 0.74 V between the OER potential at 10 mA cm^(-2)and half-wave potential of ORR in 0.1 M KOH,comparable to recently reported preeminent electrocatalysts.Further,CoFe@NC/WC shows outstanding electrochemical performance in liquid ZAB,with a peak power density of 138.9 mW cm^(-2)and a specific capacity of 763.5 mAh g^(-1).More importantly,a bacterial cellulose nanofiber reinforced polyacrylic acid(BC-PAA)hydrogel electrolyte shows ultrahigh tensile-breaking stress of 1.58 MPa.In conjunction with the as-prepared CoFe@NC/WC catalyst,BC-PAA-based wearable ZAB displays impressive rechargeability and foldability,and can power portable electronics,such as electronic timer and mobile phone,in bent states.This work provides a new approach toward high-activity and low-cost catalysts for ZAB.展开更多
Some special fields,such as deep-sea exploration,require batteries and their electrode materials to withstand extremely high pressure.As the cathode material has the highest energy density,Li-excess Mn-based materials...Some special fields,such as deep-sea exploration,require batteries and their electrode materials to withstand extremely high pressure.As the cathode material has the highest energy density,Li-excess Mn-based materials are also likely to be utilized in such an environment.However,the effect of pressure on the crystal structure and migration barrier of this kind of material is still not clear at present.Therefore,in this study,we investigate the properties of the matrix material of Li-excess Mn-based material,Li_(2)MnO_(3),under high pressure.The equation of state,bulk modulus,and steady-state volume of Li_(2)MnO_(3) are predicted by the method of first principles calculation.The calculations of unit cells at different pressures reveal that the cell parameters suffer anisotropic compression under high pressure.During compression,Li-O bond is more easily compressed than Mn-O bond.The results from the climbing image nudged elastic band(CINEB)method show that the energy barrier of Li^(+)migration in the lithium layer increases with pressure increasing.Our study can provide useful information for utilizing Li-excess Mn-based materials under high pressure.展开更多
The development of non-platinum(Pt) oxygen reduction reaction(ORR) catalysts with high activity and low cost is of great importance for large-scale commercialization of fuel cells. By means of density functional theor...The development of non-platinum(Pt) oxygen reduction reaction(ORR) catalysts with high activity and low cost is of great importance for large-scale commercialization of fuel cells. By means of density functional theory(DFT) computations, we theoretically identified that two-dimensional(2D) iron-porphyrin(Fe-Pp) sheet, in which the active Fe sites are distributed regularly and separately, is an appealing candidate. The pristine Fe-Pp sheet exhibits considerably high catalytic activity and four-electron selectivity for ORR. Especially, the adsorption of ORR intermediates on Fe-Pp sheet can be significantly weakened by the addition of axial cyanogen(CN) ligand, resulting in pronouncedly enhanced ORR activity. More interestingly, the d band center of CN attached Fe-Pp(Fe-Pp-CN) sheet can be further tuned by applying the external tensile or compressive strain, leading to an enhancement or suppression of ORR catalytic performance. In particular, under a small biaxial tensile strain of 2%, the ORR activity of Fe-Pp-CN sheet is even higher than that of Pt and reaches to the top of activity volcano. Our studies open new ways to design effective non-Pt ORR catalysts for fuel cell technology.展开更多
Hydroxyl radicals(·OH) generated on anode play a vital role in electrochemical oxidation(EO) of organic pollutants for water treatment. Inspired by the four-electron oxygen evolution reaction(OER), we supposed an...Hydroxyl radicals(·OH) generated on anode play a vital role in electrochemical oxidation(EO) of organic pollutants for water treatment. Inspired by the four-electron oxygen evolution reaction(OER), we supposed an anode-selection strategy to stabilize deeply oxidized states(*O and*OOH) which are beneficial to generating·OH. To verify the hypothesis, a candidate anode component(MIL-101(Cr), a well-known metal-organic framework with active variable-valence transition metal centers) was used to coat Ti/TiO_(2)plate to fabricate anodes. Compared to TiO_(2)(101) plane on undecorated anode surface, fast and complete removal of aniline and phenol, and improved energy utilization were achieved on MIL-101(Cr)-coatedTi/TiO_(2)anode. Mechanism investigation, including pollutant degradation pathways, showed the predominate contribution(69.60%–75.13%) of·OH in pollutant mineralization. Density functional theory(DFT)computations indicated Cr site in MIL-101(Cr) was more conducive to stabilizing*O and*OOH, leading to thermodynamical spontaneous generation of·OH. This work opens up an exciting avenue to explore·OH production, and supplies a useful guidance to the development of anode materials for EO process.展开更多
Bedaquiline(BDQ),approved by Food and Drug Administration(FDA)in 2012 as the first anti-tuberculosis-specific drug in the last 40 years,is viewed as one of the world’s most promising treatments for tuberculosis(TB).D...Bedaquiline(BDQ),approved by Food and Drug Administration(FDA)in 2012 as the first anti-tuberculosis-specific drug in the last 40 years,is viewed as one of the world’s most promising treatments for tuberculosis(TB).Due to the stereoselective construction of the Csp^(3)–Csp^(3)bond with vicinal stereocenters of BDQ and its analogues being an unsolved challenge,there have not been any reports concerning its asymmetric synthesis for the current industrial production process until now.Herein,we have successfully developed a cooperative bimetallic system for the asymmetric synthesis of BDQ under the guidance of density functional theory(DFT)computations.Based on the optimized conditions,BDQ could be synthesized with excellent enantioselectivity(>99%ee)and diastereoselectivity(16:1 dr).A 5-g scale reaction was also conducted with comparably excellent results,showing its potential for industrial application.展开更多
Developing an efficient Zn-based catalyst modified with Trifluoromethanesulfonic acid(Tf OH)ligand is extremely desirable for the acetylene hydration reaction.In this paper,with the use of a simple impregnation method...Developing an efficient Zn-based catalyst modified with Trifluoromethanesulfonic acid(Tf OH)ligand is extremely desirable for the acetylene hydration reaction.In this paper,with the use of a simple impregnation method,a series of Zn-Tf OH/AC catalysts were synthesized,and the Zn-1.5Tf OH/AC catalyst demonstrated the optimal catalytic performance with 96%acetylene conversion in the hydration of acetylene.The X-ray absorption fine structure(XAFS)spectra of the fresh Zn-1.5Tf OH/AC catalysts demonstrated the establishment of the Zn-O_(4)coordination structure.According to the characterization results,Tf OH ligands effectively inhibited carbon accumulation and Zinc loss,improved acidic sites and the dispersion of active metal,and produced more catalytic active site.Furthermore,the hydration reaction mechanism of Zn-Tf OH/AC catalyst with Zn(OTf)_(2),Tf O-Zn Cl,and Tf O-Zn OH complex configurations was explored by the Density Functional Theory(DFT)method,which showed that the activation barrier increased sequentially TfO-ZnOH<Zn(OTf)_(2)<Tf O-Zn Cl.Importantly,the OH-in TfO-ZnOH is involved in the reaction and regenerated by the dissociation of H_(2)O,which lowers the energy barrier.This will provide a reference to design more efficient nonmercury catalysts for acetylene hydration.展开更多
Photocatalysts with exposure of different crystal facets often show great differences in their photocatalytic activities due to differences in surface atomic arrangement and coordination.Thus,the actual photoreaction ...Photocatalysts with exposure of different crystal facets often show great differences in their photocatalytic activities due to differences in surface atomic arrangement and coordination.Thus,the actual photoreaction mechanism of a specific crystal facet in photocatalysis deserves to be explored.In this paper,as a case study,Sr Bi_(2)Ta_(2)O_(9)photocatalyst with preferential facet exposure was explored for the photocatalytic removal of NO at a ppb level.The efficiency of NO removal was remarkably improved by tuning the crystal exposure facet with high(200)facet exposure ratio.Optimized exposure of(200)crystal facet in Sr Bi_(2)Ta_(2)O_(9)(SBT)by thermal calcination at 800℃(SBT-800)leads to the highest NO removal activity of51%under a 300 W Xe lamp for 20 min;under visible light,SBT 800 achieves a 5-fold enhancement in NO removal efficiency compared to its counterpart,SBT-900.Active species capture experiments prove that the superoxide radical·O_(2)-is the main active species for the photocatalytic removal of NO,and surface selective deposition experiments conclude that(200)is the main electron-rich crystal plane,based on which the results of density functional theory(DFT)computation reveal the Bi O terminated nature of(001)crystal plane,where the models with both Bi O and Ta O terminated(001)planes were created and computated.Mechanistic study reveals that Sr Bi_(2)Ta_(2)O_(9)with a larger exposure of(200)facet provides more active reduction sites,thereby reducing more O_(2)to·O_(2)-,which further oxidizes the adsorbed NO to NO_(2)-/NO_(3)-.The present work underlines the role of facet tuning in the photoactivity modulation for NO removal photocatalytically.展开更多
基金financially supported in China by the Natural Science Funds for Distinguished Young Scholar of Heilongjiang Province (No. JC2018004)
文摘The co-catalysis between single atom catalyst(SAC)and its support has recently emerged as a promising strategy to synergistically boost the catalytic activity of some complex electrochemical reactions,encompassing multiple intermediates and pathways.Herein,we utilized defective BC_(3)monolayer-supported SACs as a prototype to investigate the cooperative effects of SACs and their support on the catalytic performance of the nitrogen reduction reaction(NRR)for ammonia(NH_(3))production.The results showed that these SACs can be firmly stabilized on these defective BC_(3)supports with high stability against aggregation.Furthermore,co-activation of the inert N_(2)reactant was observed in certain embedded SACs and their neighboring B atoms on certain BC3 sheets due to the noticeable charge transfer and significant N–N bond elongation.Our high-throughput screening revealed that the Mo/DV_(CC)and W/DV_(CC)exhibit superior NRR catalytic performance,characterized by a low limiting potential of−0.33 and−0.43 V,respectively,which can be further increased under acid conditions based on the constant potential method.Moreover,varying NRR catalytic activities can be attributed to the differences in the valence state of active sites.Remarkably,further microkinetic modeling analysis displayed that the turnover frequency of N_(2)–to–NH_(3)conversion on Mo/DV_(CC)is as large as 1.20×10^(−3)s^(−1)site^(−1) at 700 K and 100 bar,thus guaranteeing its ultra-fast reaction rate.Our results not only suggest promising advanced electrocatalysts for NRR but also offer an effective avenue to regulate the electrocatalytic performance via the co-catalytic metal–support interactions.
基金supported by the Innovation and Technology Commission(Grant no.PRP/032/20FX)the RFBR(Grant no.20-03-00772)
文摘Rechargeable Zn-air batteries(ZAB)have drawn extensive attention due to their eco-friendliness and safety.However,the lack of high-performance and low-cost oxygen redox reactions(OER and ORR)catalysts has become one of the main stumbling blocks in their development.Herein,we successfully fabricate a CoFe nanobubble encapsulated in nitrogen-doped carbon nanocage on wood carbon support(CoFe@NC/WC)via pyrolysis of a novel Prussian blue analog(PBA)/spruce precursor.The hierarchical CoFe@NC/WC catalyst exhibits an excellent potential difference of 0.74 V between the OER potential at 10 mA cm^(-2)and half-wave potential of ORR in 0.1 M KOH,comparable to recently reported preeminent electrocatalysts.Further,CoFe@NC/WC shows outstanding electrochemical performance in liquid ZAB,with a peak power density of 138.9 mW cm^(-2)and a specific capacity of 763.5 mAh g^(-1).More importantly,a bacterial cellulose nanofiber reinforced polyacrylic acid(BC-PAA)hydrogel electrolyte shows ultrahigh tensile-breaking stress of 1.58 MPa.In conjunction with the as-prepared CoFe@NC/WC catalyst,BC-PAA-based wearable ZAB displays impressive rechargeability and foldability,and can power portable electronics,such as electronic timer and mobile phone,in bent states.This work provides a new approach toward high-activity and low-cost catalysts for ZAB.
基金Project supported by the Research on High Power Flexible Battery in All Sea Depth,China (Grant No.2020-XXXXXX-246-00)。
文摘Some special fields,such as deep-sea exploration,require batteries and their electrode materials to withstand extremely high pressure.As the cathode material has the highest energy density,Li-excess Mn-based materials are also likely to be utilized in such an environment.However,the effect of pressure on the crystal structure and migration barrier of this kind of material is still not clear at present.Therefore,in this study,we investigate the properties of the matrix material of Li-excess Mn-based material,Li_(2)MnO_(3),under high pressure.The equation of state,bulk modulus,and steady-state volume of Li_(2)MnO_(3) are predicted by the method of first principles calculation.The calculations of unit cells at different pressures reveal that the cell parameters suffer anisotropic compression under high pressure.During compression,Li-O bond is more easily compressed than Mn-O bond.The results from the climbing image nudged elastic band(CINEB)method show that the energy barrier of Li^(+)migration in the lithium layer increases with pressure increasing.Our study can provide useful information for utilizing Li-excess Mn-based materials under high pressure.
基金supported by the National Natural Science Foundation of China (21403115 and 21522305)the Natural Science Foundation of Jiangsu Province (BK20150045)+1 种基金Innovation Project in Jiangsu Province (KYZZ16-0454)The priority academic program development of Jiangsu higher education institutions
文摘The development of non-platinum(Pt) oxygen reduction reaction(ORR) catalysts with high activity and low cost is of great importance for large-scale commercialization of fuel cells. By means of density functional theory(DFT) computations, we theoretically identified that two-dimensional(2D) iron-porphyrin(Fe-Pp) sheet, in which the active Fe sites are distributed regularly and separately, is an appealing candidate. The pristine Fe-Pp sheet exhibits considerably high catalytic activity and four-electron selectivity for ORR. Especially, the adsorption of ORR intermediates on Fe-Pp sheet can be significantly weakened by the addition of axial cyanogen(CN) ligand, resulting in pronouncedly enhanced ORR activity. More interestingly, the d band center of CN attached Fe-Pp(Fe-Pp-CN) sheet can be further tuned by applying the external tensile or compressive strain, leading to an enhancement or suppression of ORR catalytic performance. In particular, under a small biaxial tensile strain of 2%, the ORR activity of Fe-Pp-CN sheet is even higher than that of Pt and reaches to the top of activity volcano. Our studies open new ways to design effective non-Pt ORR catalysts for fuel cell technology.
基金supported by the National Natrual Science of China (NSFC, Nos. 51978341, 52070100 and 52011530433)the Natural Science Foundation of Jiangsu Province of China (No. BK20190087)Jiangsu Key Laboratory of New Power Batteries, and a project funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions。
文摘Hydroxyl radicals(·OH) generated on anode play a vital role in electrochemical oxidation(EO) of organic pollutants for water treatment. Inspired by the four-electron oxygen evolution reaction(OER), we supposed an anode-selection strategy to stabilize deeply oxidized states(*O and*OOH) which are beneficial to generating·OH. To verify the hypothesis, a candidate anode component(MIL-101(Cr), a well-known metal-organic framework with active variable-valence transition metal centers) was used to coat Ti/TiO_(2)plate to fabricate anodes. Compared to TiO_(2)(101) plane on undecorated anode surface, fast and complete removal of aniline and phenol, and improved energy utilization were achieved on MIL-101(Cr)-coatedTi/TiO_(2)anode. Mechanism investigation, including pollutant degradation pathways, showed the predominate contribution(69.60%–75.13%) of·OH in pollutant mineralization. Density functional theory(DFT)computations indicated Cr site in MIL-101(Cr) was more conducive to stabilizing*O and*OOH, leading to thermodynamical spontaneous generation of·OH. This work opens up an exciting avenue to explore·OH production, and supplies a useful guidance to the development of anode materials for EO process.
基金supported by the Bill and Melinda Gates Foundation (INV-008413)the National Natural Science Foundation of China (21831005)Shanghai Jiao Tong University
文摘Bedaquiline(BDQ),approved by Food and Drug Administration(FDA)in 2012 as the first anti-tuberculosis-specific drug in the last 40 years,is viewed as one of the world’s most promising treatments for tuberculosis(TB).Due to the stereoselective construction of the Csp^(3)–Csp^(3)bond with vicinal stereocenters of BDQ and its analogues being an unsolved challenge,there have not been any reports concerning its asymmetric synthesis for the current industrial production process until now.Herein,we have successfully developed a cooperative bimetallic system for the asymmetric synthesis of BDQ under the guidance of density functional theory(DFT)computations.Based on the optimized conditions,BDQ could be synthesized with excellent enantioselectivity(>99%ee)and diastereoselectivity(16:1 dr).A 5-g scale reaction was also conducted with comparably excellent results,showing its potential for industrial application.
基金financial support provided by the High-level Talent Scientific Research Project of Shihezi University(Nos.RCZK201934 and SHYL-BQ201906)the National Natural Science Funds of China(NSFC,No.22178225)。
文摘Developing an efficient Zn-based catalyst modified with Trifluoromethanesulfonic acid(Tf OH)ligand is extremely desirable for the acetylene hydration reaction.In this paper,with the use of a simple impregnation method,a series of Zn-Tf OH/AC catalysts were synthesized,and the Zn-1.5Tf OH/AC catalyst demonstrated the optimal catalytic performance with 96%acetylene conversion in the hydration of acetylene.The X-ray absorption fine structure(XAFS)spectra of the fresh Zn-1.5Tf OH/AC catalysts demonstrated the establishment of the Zn-O_(4)coordination structure.According to the characterization results,Tf OH ligands effectively inhibited carbon accumulation and Zinc loss,improved acidic sites and the dispersion of active metal,and produced more catalytic active site.Furthermore,the hydration reaction mechanism of Zn-Tf OH/AC catalyst with Zn(OTf)_(2),Tf O-Zn Cl,and Tf O-Zn OH complex configurations was explored by the Density Functional Theory(DFT)method,which showed that the activation barrier increased sequentially TfO-ZnOH<Zn(OTf)_(2)<Tf O-Zn Cl.Importantly,the OH-in TfO-ZnOH is involved in the reaction and regenerated by the dissociation of H_(2)O,which lowers the energy barrier.This will provide a reference to design more efficient nonmercury catalysts for acetylene hydration.
基金supported by the National Natural Science Foundation of China(Nos.21976116,52161145409)Shaanxi Science and Technology Program(No.2020KWZ-005)+3 种基金High Level Talents Introduction Project of"Pearl River Talent Plan"in Guangdong Province(No.2019CX01L308)the Support Scheme of Guangzhou for Leading Talents in Innovation and Entrepreneurship Funding(No.2016015)SAFEA of China(High-end Foreign Expert Project)Alexander-von-Humboldt Foundation of Germany(Group-Linkage Program)。
文摘Photocatalysts with exposure of different crystal facets often show great differences in their photocatalytic activities due to differences in surface atomic arrangement and coordination.Thus,the actual photoreaction mechanism of a specific crystal facet in photocatalysis deserves to be explored.In this paper,as a case study,Sr Bi_(2)Ta_(2)O_(9)photocatalyst with preferential facet exposure was explored for the photocatalytic removal of NO at a ppb level.The efficiency of NO removal was remarkably improved by tuning the crystal exposure facet with high(200)facet exposure ratio.Optimized exposure of(200)crystal facet in Sr Bi_(2)Ta_(2)O_(9)(SBT)by thermal calcination at 800℃(SBT-800)leads to the highest NO removal activity of51%under a 300 W Xe lamp for 20 min;under visible light,SBT 800 achieves a 5-fold enhancement in NO removal efficiency compared to its counterpart,SBT-900.Active species capture experiments prove that the superoxide radical·O_(2)-is the main active species for the photocatalytic removal of NO,and surface selective deposition experiments conclude that(200)is the main electron-rich crystal plane,based on which the results of density functional theory(DFT)computation reveal the Bi O terminated nature of(001)crystal plane,where the models with both Bi O and Ta O terminated(001)planes were created and computated.Mechanistic study reveals that Sr Bi_(2)Ta_(2)O_(9)with a larger exposure of(200)facet provides more active reduction sites,thereby reducing more O_(2)to·O_(2)-,which further oxidizes the adsorbed NO to NO_(2)-/NO_(3)-.The present work underlines the role of facet tuning in the photoactivity modulation for NO removal photocatalytically.