The structural, electronic, and optical properties of Cu2Zn1−xBaxSn1−ySiyS4 compounds have been calculated using GGA-PBE function within the framework of Density Functional Theory (DFT). In the present work, lattice p...The structural, electronic, and optical properties of Cu2Zn1−xBaxSn1−ySiyS4 compounds have been calculated using GGA-PBE function within the framework of Density Functional Theory (DFT). In the present work, lattice parameters remained the same, that is tetragonal crystal structure for 0% and 100% doping concentration. The electronic band gap of Cu2Zn1−xBaxSn1−ySiyS4 compounds has been gradually increased for continuous increment of doping concentration where the highest electronic band gap is 1.117 eV for Cu2BaSiS4 structure. Moreover, the band gap changes from direct to indirect band gap with the increase of doping concentration in the parent compound. The absorption coefficient has been found to be high (> 104 cm−1) in UV-region for all the doping concentration which makes the studied compound as a potential candidate of absorber layer in the UV detector. The theoretical study of the effect of double doping in the CZTS compound is very interesting for improving the quality of it and it would be a reference for the theoretical and experimental researchers.展开更多
Geometrical configurations of 16 substituted biphenyls were computed at the B3LYP/6-311G^** level with Gaussian 98 program. Based on linear solvation energy theory, lgKow as well as the structural and thermodynamic ...Geometrical configurations of 16 substituted biphenyls were computed at the B3LYP/6-311G^** level with Gaussian 98 program. Based on linear solvation energy theory, lgKow as well as the structural and thermodynamic parameters obtained at this level was taken as theoretical descriptors, and corresponding equation predicting the toxicity of Daphnia magna (-lgEC5o) was thus obtained, in which three parameters were contained, i.e., n-octanol/water partition coefficients (lgKow), dipole moment of the molecules( μ) and entropy (S°). For this equation, R^2 = 0.9582, q^2 = 0.8921 and SD = 0.102. The absolute t-scores of three variables are larger than the standard one in the confidence range of 95%, which confirms the creditability and stability of this model.展开更多
Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR cataly...Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR catalysts by density functional theory calculations,ranging from single-atom,nanocluster to bulk Pt catalysts.The results showed that the ORR overpotential of these Pt-based catalysts increased when its size enlarged to the nanoparticle scale or reduced to the single-atom scale,and the Pt_(38)cluster had the lowest ORR overpotential(0.46 V)compared with that of Pt_(111)(0.57 V)and single atom Pt(0.7 V).Moreover,we established a volcano curve relationship between the ORR overpotential and binding energy of O*(ΔE_(O*),confirming the intermediate species anchored on Pt38cluster with suitable binding energy located at top of volcano curve.The interaction between intermediate species and Pt-based catalysts were also investigated by the charge distribution and projected density of state and which further confirmed the results of volcano curve.展开更多
In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional t...In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.展开更多
Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an ef...Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.展开更多
First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated resu...First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.展开更多
A novel model was developed to theoretically evaluate the 02 adsorption on H-terminated Si(001)-(2×2×1) surface. The periodic boundary condition, the ultrasoft pseudopotentials technique based on density...A novel model was developed to theoretically evaluate the 02 adsorption on H-terminated Si(001)-(2×2×1) surface. The periodic boundary condition, the ultrasoft pseudopotentials technique based on density functional theory (DFT) with generalized gradient approxi,natior, (GGA) functional were applied in our ab initio calculations. By analyzing bonding energy oil site, the favourable adsorption site was determined. The calculations also predicted that the adsorption products should be Si=O and H2O. This theoretical study snpported the reaction mechanism provided by Kovalev et al, The results were also a base for further investigation of some more complex systems such as the oxida.tion on porous silicon surface.展开更多
The plane-wave pseudopotential function method, based on density-functional theory, has been used to calculate the adsorption, electronic band structures, orbitals and optical absorption spectrum of [Fe(CN)6]^4- on ...The plane-wave pseudopotential function method, based on density-functional theory, has been used to calculate the adsorption, electronic band structures, orbitals and optical absorption spectrum of [Fe(CN)6]^4- on TiOz anatase(101) surface. Our calculations reveal that the surface-modified anatase system has large adsorption energy and a much narrower band gap. [Fe(CN)6]^4- adsorption on the (101) surface could lead to a large red shift of the anatase optical absorption threshold, which extends into a visible region significantly. The calculated results are in agreement with the experiment and other theoretical studies reasonably. It is very important for the understanding and further development ofphotovoltaic materials that are active under visible light.展开更多
Density functional theory (DFT) was applied to study the ground state geometries and isomerization processes of 1,1'-binaphthalene-8,8'-diol. Three isomers, denoted as ISO1, ISO2, and ISO3, were found, distinguish...Density functional theory (DFT) was applied to study the ground state geometries and isomerization processes of 1,1'-binaphthalene-8,8'-diol. Three isomers, denoted as ISO1, ISO2, and ISO3, were found, distinguished by different orientations of the OH groups, and each OH-orientational isomer has R- and S-enantiomer. The conformational stabilities of these isomers were investigated by tracking the energy change with respect to the ring-to-ring torsion. The inter-conversions between the three OH-orientational S-isomers were found to have quite low barriers owing to the nearly free rotation of OH groups around the O-C single bonds. The S-R enantiomerization of ISO1 and ISO2 can take place through the ring-ring torsion around the C1-C1/ single bond, either in the anti-rotation manner or in the syn-rotation manner. The barriers of the anti routes are lower than those of the corresponding syn routes by 87.95 and 75.04 kJ/mol. For the S-R enantiomerization of ISO3, only the anti route was found. The barriers for the anti route enantiomerizations of ISO1, ISO2, and ISO3 are 119.61, 120.43, and 121.59 kJ/mol, respectively. A parallel reaction mechanism via three anti enantiomerization routes was proposed for the racemization of 1,1'-binaphthalene-8,8'-diol.展开更多
Optimized calculation of 35 dialkyl phenyl phosphate compounds (OPs) was carded out at the B3LYP/6-31G^* level in Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, ...Optimized calculation of 35 dialkyl phenyl phosphate compounds (OPs) was carded out at the B3LYP/6-31G^* level in Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained parameters were taken as theoretical descriptors to establish the novel QSPR model for predicting n-octanol/water partition coefficients (lgKow) of OPs. The new model achieved in this work contains three variables, i.e., molecular volume (Vm), dipole moment of the molecules (μ) and enthalpy (H^0). For this model, R^2 = 0.9167 and SD = 0.31 at large t values. In addition, the variation inflation factors (VIF) of variables are all close to 1.0, suggesting high accuracy of the predicting model. And the results of cross-validation test (q^2 = 0.8993) and method validation also showed the model of this study exhibited optimum stability and better predictive power than that from semi-empirical method. The model achieved can be used to predict IgKow of congeneric compounds.展开更多
Optimized calculations of 209 polychlorinated diphenyl ethers (PCDEs) and diphenyl ethers were carried out at the B3LYP/6-31G^* level with the Gaussian 98 program. Based on the theoretical linear solvation energy r...Optimized calculations of 209 polychlorinated diphenyl ethers (PCDEs) and diphenyl ethers were carried out at the B3LYP/6-31G^* level with the Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained structural parameters were taken as theoretical descriptors to establish the novel QSPR model for predicting aqueous solubility (-lgSw) of PCDEs. The model obtained in this work contains two variables: mean molecular polarizability (a) and the most positive partial charge on a hydrogen atom (qH^+), of which RE = 0.9606 and SD = 0.32. And the results of cross-validation test also show that the model exhibits optimum stability and better predictive power. Moreover, the predictive power of the new model is better than that of MCIs method.展开更多
Density functional theory (DFT) calculations are employed to investigate the structural and electronic properties of MoS6^- and MoS6 clusters. Generalized Koopmans' theorem is applied to predict the vertical detach...Density functional theory (DFT) calculations are employed to investigate the structural and electronic properties of MoS6^- and MoS6 clusters. Generalized Koopmans' theorem is applied to predict the vertical detachment energies and simulate the photoelectron spectra (PES). Intriguingly, the terminal S2-, polysulfide S2^2- and S3^2- ligands simultaneously emerge in the lowest-energy structure of MoS6. Molecular orbital analyses are performed to analyze the chemical bonding in MoS6^-/0 clusters and elucidate their structural and electronic properties.展开更多
This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. ...This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes. Furthermore, the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions. The present results have shown that with both computational methods, the hydrogen storage capacity of BC3 nanotubes is superior to that of carbon nanotubes. The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.展开更多
The synthesis of 5-substituted 1H-tetrazoles in n,n-dimethylformamide(DMF) with b-cyclodextrin(β-CD) as catalyst can get an excellent yield in short reaction time.The interaction of β-CD with p-chlorobenzonitril...The synthesis of 5-substituted 1H-tetrazoles in n,n-dimethylformamide(DMF) with b-cyclodextrin(β-CD) as catalyst can get an excellent yield in short reaction time.The interaction of β-CD with p-chlorobenzonitrile plays an important role in this process.This paper studies the complex of β-CD with p-chlorobenzonitrile using density functional theory(DFT) method.The minimum energy structure is investigated in water,DMF and DMSO.Hydrogen bonds are researched on the basis of natural bonding orbital(NBO) analysis.The relative position between p-chlorobenzonitrile and β-CD in DMF is confirmed by 1H nuclear magnetic resonance(1H NMR).The data from 13 C and 15 N spectra indicate that more positive charges focus on the carbon atom of cyanogroup(C11) and more negative charges concentrate on the nitrogen atom of cyanogroup(N12) upon complexation.The results from frontier molecular orbitals and Mulliken charge reveal that β-CD catalyst improves the reactivity and electrophilicity of p-chlorobenzonitrile.Meanwhile,the functional group of p-chlorobenzonitrile is easier to be attacked by azide ions in the presence of β-CD as catalyst.展开更多
The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 pr...The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.展开更多
Phenolic compounds are a class of hazardous substances for human.To study the antiradical potential of a series of phenolic compounds from the aspect of position and substituent type,phenol,o⁃dihydroxybenzene(ODB),m⁃d...Phenolic compounds are a class of hazardous substances for human.To study the antiradical potential of a series of phenolic compounds from the aspect of position and substituent type,phenol,o⁃dihydroxybenzene(ODB),m⁃dihydroxybenzene(MDB),p⁃dihydroxybenzene(PDB),paranitrophenol(PNP),and o⁃chlorophenol(OCP)were selected as typical targets.In addition,to elucidate the degradation discrepancy of phenolic compounds,quantum chemical calculations(QCCs)were obtained using the B3LYP method along with a 6-311G(d,p)basis set.Calculations indicate that phenol,ODB,MDB,and PDB,with electron⁃donating groups,exhibited high antiradical potential,while PNP and OCP,with electron⁃withdrawing groups,exhibited low antiradical potential.The chemical indices calculations show that para⁃compounds and ortho⁃compounds had high antiradical ability.Moreover,phenol,ODB,MDB,and PDB possessed higher bond dissociation enthalpy(BDE)and lower adiabatic ionization potential(AIP)values compared with those of OCP and PNP.Medium effects,even in vacuo,were also taken into account to reveal the antiradical ability of phenolic compounds.展开更多
1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide(1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2Hbenzo[e][1,2]thiazine-3-carboxylate 1,1-dioxid...1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide(1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2Hbenzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide(2) were synthesized, and characterized by spectroscopic techniques; 1H-NMR and infrared(IR) spectroscopy. Crystals of 1 and 2 were grown by slow evaporation of methanol and ethyl acetate, respectively and their crystal structures were investigated by single-crystal X-ray diffraction analysis. Geometric properties were calculated by the B3 LYP method of density functional theory(DFT) at the 6-31G+(d) basis set to compare with the experimental data. Simulated properties were found in strong agreement with the experimental ones. Intermolecular forces have also been modeled in order to investigate the strength of packing and strong hydrogen bonding was observed in both compounds 1 and 2. Electronic properties such as Ionization Potential(IP), Electron Affinities(EA) and coefficients of the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of com- pounds 1 and 2 were simulated for the first time.展开更多
Density function theory (DFT) at the B3LYP/6- 311 + + G(2d) (5D, 7F) level of theory was calculated to predict the geometry structures, toted energy and net charges of four kinds of dynamic isomer molecules of...Density function theory (DFT) at the B3LYP/6- 311 + + G(2d) (5D, 7F) level of theory was calculated to predict the geometry structures, toted energy and net charges of four kinds of dynamic isomer molecules of 2-aminino-5 mercapto- 1,3,4-thiodizole ( AA/IT for short). The fact that the atoms in four kinds of dynamie AMT isomer molecules lie in a plane and one kind of AMT is most stable is approved. The results also indicate that the pentogon ring in four kinds of dynamic AMT isomer molecules are aromatics, and the AMTc and Cu corrosion mitigation film produces as a result of the bonds form one by one of the covalent bond of Cu(1) with 7 N atom in AMTc amd the coordinate bond of Cu with 2S atom in ATMc. The resonant vibration frequencies and IR intensity for the four kituds of dynamic isomer of AMT are also calculated and their IR spectra are shown.展开更多
Density Functional Theory (DFT) method was used in this paper to study one-carbon transfer from 1,10-tetrahydroquinoxaline, an analogue of tetrahydrofolic acid, to methylamine. This reaction can be completed via two ...Density Functional Theory (DFT) method was used in this paper to study one-carbon transfer from 1,10-tetrahydroquinoxaline, an analogue of tetrahydrofolic acid, to methylamine. This reaction can be completed via two paths. From the computation result we can conclude that a general-acid catalysis exists in this reaction. By computation we find DFT has its limitation in describing a newly incorporated structure with a unit charge.展开更多
文摘The structural, electronic, and optical properties of Cu2Zn1−xBaxSn1−ySiyS4 compounds have been calculated using GGA-PBE function within the framework of Density Functional Theory (DFT). In the present work, lattice parameters remained the same, that is tetragonal crystal structure for 0% and 100% doping concentration. The electronic band gap of Cu2Zn1−xBaxSn1−ySiyS4 compounds has been gradually increased for continuous increment of doping concentration where the highest electronic band gap is 1.117 eV for Cu2BaSiS4 structure. Moreover, the band gap changes from direct to indirect band gap with the increase of doping concentration in the parent compound. The absorption coefficient has been found to be high (> 104 cm−1) in UV-region for all the doping concentration which makes the studied compound as a potential candidate of absorber layer in the UV detector. The theoretical study of the effect of double doping in the CZTS compound is very interesting for improving the quality of it and it would be a reference for the theoretical and experimental researchers.
基金This work was supported by the Natural Science Research Fund of Universities in Jiangsu Province (04KJB150149)
文摘Geometrical configurations of 16 substituted biphenyls were computed at the B3LYP/6-311G^** level with Gaussian 98 program. Based on linear solvation energy theory, lgKow as well as the structural and thermodynamic parameters obtained at this level was taken as theoretical descriptors, and corresponding equation predicting the toxicity of Daphnia magna (-lgEC5o) was thus obtained, in which three parameters were contained, i.e., n-octanol/water partition coefficients (lgKow), dipole moment of the molecules( μ) and entropy (S°). For this equation, R^2 = 0.9582, q^2 = 0.8921 and SD = 0.102. The absolute t-scores of three variables are larger than the standard one in the confidence range of 95%, which confirms the creditability and stability of this model.
基金supported by the National Natural Science Foundation of China(92061125,21978294)Beijing Natural Science Foundation(Z200012)+3 种基金Jiangxi Natural Science Foundation(20212ACB213009)DNL Cooperation Fund,CAS(DNL201921)Self-deployed Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(E055B003)Hebei Natural Science Foundation(B2020103043)。
文摘Developing novel oxygen reduction reaction(ORR)catalysts with high activity is urgent for proton exchange membrane fuel cells.Herein,we investigated a group of size-dependent Pt-based catalysts as promising ORR catalysts by density functional theory calculations,ranging from single-atom,nanocluster to bulk Pt catalysts.The results showed that the ORR overpotential of these Pt-based catalysts increased when its size enlarged to the nanoparticle scale or reduced to the single-atom scale,and the Pt_(38)cluster had the lowest ORR overpotential(0.46 V)compared with that of Pt_(111)(0.57 V)and single atom Pt(0.7 V).Moreover,we established a volcano curve relationship between the ORR overpotential and binding energy of O*(ΔE_(O*),confirming the intermediate species anchored on Pt38cluster with suitable binding energy located at top of volcano curve.The interaction between intermediate species and Pt-based catalysts were also investigated by the charge distribution and projected density of state and which further confirmed the results of volcano curve.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(NRF-2022R1C1C1011058)。
文摘In this review,we discuss the electrochemical properties of Prussian blue(PB)for Na^(+)storage by combining structural engineering and electrolyte modifications.We integrated experimental data and density functional theory(DFT)in sodium-ion battery(SIB)research to refine the atomic arrangements and crystal lattices and introduce substitutions and dopants.These changes affect the lattice stability,intercalation,electronic and ionic conductivities,and electrochemical performance.We unraveled the intricate structure-electrochemical behavior relationship by combining experimental data with computational models,including first-principles calculations.This holistic approach identified techniques for optimizing PB and Prussian blue analog(PBA)structu ral properties for SIBs.We also discuss the tuning of electrolytes by systematically adjusting their composition,concentration,and additives using a combination of molecular dynamics(MD)simulations and DFT computations.Our review offers a comprehensive assessment of strategies for enhancing the electrochemical properties of PB and PBAs through structural engineering and electrolyte modifications,combining experimental insights with advanced computational simulations,and paving the way for next-generation energy storage systems.
基金Project supported by the Natural Science Foundation of Anhui Province(Grant No.1908085MA12)the National Natural Science Foundation of China(Grant No.21703222)。
文摘Cyclo[18]carbon has received considerable attention thanks to its novel geometric configuration and special electronic structure.Superalkalis have low ionization energy.Doping a superalkali in cyclo[18]carbon is an effective method to improve the optical properties of the system because considerable electron transfer occurs.In this paper,the geometry,bonding properties,electronic structure,absorption spectrum,and nonlinear optical(NLO)properties of superalkaline M_(3)O(M=Li,Na)-doped cyclo[18]carbon were studied by using density functional theory.M_(3)O and the C_(18) rings are not coplanar.The C_(18) ring still exhibits alternating long and short bonds.The charge transfer between M_(3)O and C_(18) forms stable[M_(3)O]+[C_(18)]-ionic complexes.C_(18)M_(3)O(M=Li,Na)shows striking optical nonlinearity,i.e.,their first-and second-order hyperpolarizability(βvec andγ||)increase considerably atλ=1907 nm and 1460 nm.
基金Project(51164001)supported by the National Natural Science Foundation of China
文摘First-principles calculations are performed to investigate the relaxation and electronic properties of sulfide minerals surfaces(MoS2, Sb2S3, Cu2 S, ZnS, PbS and FeS2) in presence of H2 O molecule. The calculated results show that the structure and electronic properties of sulfide minerals surfaces have been influenced in presence of H2 O molecule. The adsorption of the flotation reagent at the interface of mineral-water would be different from that of mineral surface due to the changes of surface structures and electronic properties caused by H2 O molecule. Hence, the influence of H2 O molecule on the reaction of flotation reagent with sulfide mineral surface will attract more attention.
文摘A novel model was developed to theoretically evaluate the 02 adsorption on H-terminated Si(001)-(2×2×1) surface. The periodic boundary condition, the ultrasoft pseudopotentials technique based on density functional theory (DFT) with generalized gradient approxi,natior, (GGA) functional were applied in our ab initio calculations. By analyzing bonding energy oil site, the favourable adsorption site was determined. The calculations also predicted that the adsorption products should be Si=O and H2O. This theoretical study snpported the reaction mechanism provided by Kovalev et al, The results were also a base for further investigation of some more complex systems such as the oxida.tion on porous silicon surface.
基金the Scientific and Technology Foundation of Fuzhou University and the Key Project of Fujian Province (2005HZ01-2-6)
文摘The plane-wave pseudopotential function method, based on density-functional theory, has been used to calculate the adsorption, electronic band structures, orbitals and optical absorption spectrum of [Fe(CN)6]^4- on TiOz anatase(101) surface. Our calculations reveal that the surface-modified anatase system has large adsorption energy and a much narrower band gap. [Fe(CN)6]^4- adsorption on the (101) surface could lead to a large red shift of the anatase optical absorption threshold, which extends into a visible region significantly. The calculated results are in agreement with the experiment and other theoretical studies reasonably. It is very important for the understanding and further development ofphotovoltaic materials that are active under visible light.
文摘Density functional theory (DFT) was applied to study the ground state geometries and isomerization processes of 1,1'-binaphthalene-8,8'-diol. Three isomers, denoted as ISO1, ISO2, and ISO3, were found, distinguished by different orientations of the OH groups, and each OH-orientational isomer has R- and S-enantiomer. The conformational stabilities of these isomers were investigated by tracking the energy change with respect to the ring-to-ring torsion. The inter-conversions between the three OH-orientational S-isomers were found to have quite low barriers owing to the nearly free rotation of OH groups around the O-C single bonds. The S-R enantiomerization of ISO1 and ISO2 can take place through the ring-ring torsion around the C1-C1/ single bond, either in the anti-rotation manner or in the syn-rotation manner. The barriers of the anti routes are lower than those of the corresponding syn routes by 87.95 and 75.04 kJ/mol. For the S-R enantiomerization of ISO3, only the anti route was found. The barriers for the anti route enantiomerizations of ISO1, ISO2, and ISO3 are 119.61, 120.43, and 121.59 kJ/mol, respectively. A parallel reaction mechanism via three anti enantiomerization routes was proposed for the racemization of 1,1'-binaphthalene-8,8'-diol.
基金the State Science Foundation of China (No. 20477018)
文摘Optimized calculation of 35 dialkyl phenyl phosphate compounds (OPs) was carded out at the B3LYP/6-31G^* level in Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained parameters were taken as theoretical descriptors to establish the novel QSPR model for predicting n-octanol/water partition coefficients (lgKow) of OPs. The new model achieved in this work contains three variables, i.e., molecular volume (Vm), dipole moment of the molecules (μ) and enthalpy (H^0). For this model, R^2 = 0.9167 and SD = 0.31 at large t values. In addition, the variation inflation factors (VIF) of variables are all close to 1.0, suggesting high accuracy of the predicting model. And the results of cross-validation test (q^2 = 0.8993) and method validation also showed the model of this study exhibited optimum stability and better predictive power than that from semi-empirical method. The model achieved can be used to predict IgKow of congeneric compounds.
基金funded by the 973 National Basic Research Program of China (2003CB415002)China Postdoctoral Science Foundation (No. 2003033486)
文摘Optimized calculations of 209 polychlorinated diphenyl ethers (PCDEs) and diphenyl ethers were carried out at the B3LYP/6-31G^* level with the Gaussian 98 program. Based on the theoretical linear solvation energy relationship (TLSER) model, the obtained structural parameters were taken as theoretical descriptors to establish the novel QSPR model for predicting aqueous solubility (-lgSw) of PCDEs. The model obtained in this work contains two variables: mean molecular polarizability (a) and the most positive partial charge on a hydrogen atom (qH^+), of which RE = 0.9606 and SD = 0.32. And the results of cross-validation test also show that the model exhibits optimum stability and better predictive power. Moreover, the predictive power of the new model is better than that of MCIs method.
基金Supported by the National Natural Science Foundation of China (21171039, 21073035, 21071031 and 90922022)National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China (J1103303)Foundation of Fuzhou University (0460-022342 and 0041-600616)
文摘Density functional theory (DFT) calculations are employed to investigate the structural and electronic properties of MoS6^- and MoS6 clusters. Generalized Koopmans' theorem is applied to predict the vertical detachment energies and simulate the photoelectron spectra (PES). Intriguingly, the terminal S2-, polysulfide S2^2- and S3^2- ligands simultaneously emerge in the lowest-energy structure of MoS6. Molecular orbital analyses are performed to analyze the chemical bonding in MoS6^-/0 clusters and elucidate their structural and electronic properties.
基金Project supported by Henan University of Technology Foundation (Grant No. 2009BS025)China Academy of Engineering Physics Foundation (Grant No. 2007B08008)
文摘This paper applies a density functional theory (DFT) and grand canonical Monte Carlo simulations (GCMC) to investigate the physisorptions of molecular hydrogen in single-walled BC3 nanotubes and carbon nanotubes. The DFT calculations may provide useful information about the nature of hydrogen adsorption and physisorption energies in selected adsorption sites of these two nanotubes. Furthermore, the GCMC simulations can reproduce their storage capacity by calculating the weight percentage of the adsorbed molecular hydrogen under different conditions. The present results have shown that with both computational methods, the hydrogen storage capacity of BC3 nanotubes is superior to that of carbon nanotubes. The reasons causing different behaviour of hydrogen storage in these two nanotubes are explained by using their contour plots of electron density and charge-density difference.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department(No.12A132)
文摘The synthesis of 5-substituted 1H-tetrazoles in n,n-dimethylformamide(DMF) with b-cyclodextrin(β-CD) as catalyst can get an excellent yield in short reaction time.The interaction of β-CD with p-chlorobenzonitrile plays an important role in this process.This paper studies the complex of β-CD with p-chlorobenzonitrile using density functional theory(DFT) method.The minimum energy structure is investigated in water,DMF and DMSO.Hydrogen bonds are researched on the basis of natural bonding orbital(NBO) analysis.The relative position between p-chlorobenzonitrile and β-CD in DMF is confirmed by 1H nuclear magnetic resonance(1H NMR).The data from 13 C and 15 N spectra indicate that more positive charges focus on the carbon atom of cyanogroup(C11) and more negative charges concentrate on the nitrogen atom of cyanogroup(N12) upon complexation.The results from frontier molecular orbitals and Mulliken charge reveal that β-CD catalyst improves the reactivity and electrophilicity of p-chlorobenzonitrile.Meanwhile,the functional group of p-chlorobenzonitrile is easier to be attacked by azide ions in the presence of β-CD as catalyst.
基金the National Natural Science Foundation of China(No.20737001 and 20477018)
文摘The structural and thermodynamic (PCTAs) in the ideal gas state at 298.15 K and 1.013 properties of 75 polychlorinated thianthrenes ×10^5 Pa have been calculated at the B3LYP/6- 31G* level using Gaussian 98 program. Based on the output data of Gaussian, the isodesmic reactions were designed to calculate standard enthalpy of formation (△fH^θ) and standard free energy of formation (△fH^θ) of PCTAs congeners. The relations of these thermodynamic parameters with the number and position of C1 atom substitution (Npcs) were discussed, and it was found that there exists high correlation between thermodynamic parameters (total energy (TE), zero-point vibrational energy (ZPE), thermal correction to energy (Eth), heat capacity at constant volume (Cv^θ), entropy (S^θ), enthalpy (H^θ), free energy (G^θ), standard enthalpies of formation (△fH^θ) and standard Gibbs energies of formation (△fG^θ)) and Npcs. On the basis of the relative magnitude of their △fG^θ, the order of relative stability of PCTA congeners was theoretically proposed. In addition, the correlations between structural parameters and Npcs were also discussed. The good correlations were found between molecular average polarizability (α), energy of the highest occupied molecular orbital (EHOMO), molecular volume (Vm) and Npcs, and all R^2 values are larger than 0.95. Moreover, it was supposed that the isomer groups with higher toxicity should be Tri-CTA and TCTA.
基金Sponsored by the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(Grant No.HCK201804).
文摘Phenolic compounds are a class of hazardous substances for human.To study the antiradical potential of a series of phenolic compounds from the aspect of position and substituent type,phenol,o⁃dihydroxybenzene(ODB),m⁃dihydroxybenzene(MDB),p⁃dihydroxybenzene(PDB),paranitrophenol(PNP),and o⁃chlorophenol(OCP)were selected as typical targets.In addition,to elucidate the degradation discrepancy of phenolic compounds,quantum chemical calculations(QCCs)were obtained using the B3LYP method along with a 6-311G(d,p)basis set.Calculations indicate that phenol,ODB,MDB,and PDB,with electron⁃donating groups,exhibited high antiradical potential,while PNP and OCP,with electron⁃withdrawing groups,exhibited low antiradical potential.The chemical indices calculations show that para⁃compounds and ortho⁃compounds had high antiradical ability.Moreover,phenol,ODB,MDB,and PDB possessed higher bond dissociation enthalpy(BDE)and lower adiabatic ionization potential(AIP)values compared with those of OCP and PNP.Medium effects,even in vacuo,were also taken into account to reveal the antiradical ability of phenolic compounds.
基金funded by the Saudi Basic Industries Corporation(SABIC) and the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,under grant no.(MS/15/396/1434)
文摘1,2-Benzothiazine derivatives methyl 3-methoxy-4-oxo-3,4-dihydro-2H-benzo[e] [1,2]thiazine-3-carboxylate 1,1-dioxide(1) and methyl 2-ethyl-3-hydroxy-4-oxo-3,4-dihydro-2Hbenzo[e][1,2]thiazine-3-carboxylate 1,1-dioxide(2) were synthesized, and characterized by spectroscopic techniques; 1H-NMR and infrared(IR) spectroscopy. Crystals of 1 and 2 were grown by slow evaporation of methanol and ethyl acetate, respectively and their crystal structures were investigated by single-crystal X-ray diffraction analysis. Geometric properties were calculated by the B3 LYP method of density functional theory(DFT) at the 6-31G+(d) basis set to compare with the experimental data. Simulated properties were found in strong agreement with the experimental ones. Intermolecular forces have also been modeled in order to investigate the strength of packing and strong hydrogen bonding was observed in both compounds 1 and 2. Electronic properties such as Ionization Potential(IP), Electron Affinities(EA) and coefficients of the highest occupied molecular orbital(HOMO) and the lowest unoccupied molecular orbital(LUMO) of com- pounds 1 and 2 were simulated for the first time.
基金Supported by the National Natural Science Foundation ( No.59925412) and Natural Science Foundation of Hunan Province (No.03JJY3015)
文摘Density function theory (DFT) at the B3LYP/6- 311 + + G(2d) (5D, 7F) level of theory was calculated to predict the geometry structures, toted energy and net charges of four kinds of dynamic isomer molecules of 2-aminino-5 mercapto- 1,3,4-thiodizole ( AA/IT for short). The fact that the atoms in four kinds of dynamie AMT isomer molecules lie in a plane and one kind of AMT is most stable is approved. The results also indicate that the pentogon ring in four kinds of dynamic AMT isomer molecules are aromatics, and the AMTc and Cu corrosion mitigation film produces as a result of the bonds form one by one of the covalent bond of Cu(1) with 7 N atom in AMTc amd the coordinate bond of Cu with 2S atom in ATMc. The resonant vibration frequencies and IR intensity for the four kituds of dynamic isomer of AMT are also calculated and their IR spectra are shown.
基金This work was supported by the grant from the National Natural Science Foundation of China (No. 29973021)
文摘Density Functional Theory (DFT) method was used in this paper to study one-carbon transfer from 1,10-tetrahydroquinoxaline, an analogue of tetrahydrofolic acid, to methylamine. This reaction can be completed via two paths. From the computation result we can conclude that a general-acid catalysis exists in this reaction. By computation we find DFT has its limitation in describing a newly incorporated structure with a unit charge.