Reproductive stage frost poses a major constraint for wheat production in countries such as Australia.However,little progress has been made in identifying key genes to overcome the constraint.In the present study,a se...Reproductive stage frost poses a major constraint for wheat production in countries such as Australia.However,little progress has been made in identifying key genes to overcome the constraint.In the present study,a severe frost event hit two large-scale field trials consisting of six doubled haploid(DH)wheat populations at reproductive stage(young microspore stage)in Western Australia,leading to the identification of 30 robust frost QTL on 17 chromosomes.The major 18 QTL with the phenotype variation over 9.5%were located on 13 chromosomes including 2 A,2 B,2 D,3 A,4 A,4 B,4 D,5 A,5 D,6 D,7 A,7 B and7 D.Most frost QTL were closely linked to the QTL of anthesis,maturity,Zadok stages as well as linked to anthesis related genes.Out of those,six QTL were repetitively detected on the homologous regions on 2 B,4 B,4 D,5 A,5 D,7 A in more than two populations.Results showed that the frost damage is associated with alleles of Vrn-A1 a,Vrn-D1 a,Rht-B1 b,Rht-D1 b,and the high copy number of Ppd-B1.However,anthesis QTL and anthesis related genes of Vrn-B1 a and Ta FT3-1 B on chromosomes 5 B and 1 B did not lead to frost damage,indicating that these early-flowering phenotype related genes are compatible with frost tolerance and thus can be utilised in breeding.Our results also indicate that wild-type alleles Rht-B1 a and Rht-D1 a can be used when breeding for frost-tolerant varieties without delaying flowering time.展开更多
[Objective] This study aimed to conduct genetic analysis on agronomic traits of doubled haploid population in tobacco. [Method] Main agronomic traits of DH population in tobacco were investigated, including plant heig...[Objective] This study aimed to conduct genetic analysis on agronomic traits of doubled haploid population in tobacco. [Method] Main agronomic traits of DH population in tobacco were investigated, including plant height, effective number of leaves, lumbar leaf length, lumbar leaf width, intermodal distance and pericaulome length. Based on the estimation of skewness coefficient and kurtosis coefficient of Hongda x Hicks Broad Leaf populations, the number of gene pairs was calculated. [Result] The number of gene pairs controlling plant height (topping plant height and natural plant height) is 10.20 and 10.80, respectively; the number of gene pairs con- trolling leaf number (effective number of leaves and natural number of leaves) is 6.21 and 6.25, respectively; the number of gene pairs controlling pericaulome length, intermodal distance, lumbar leaf length and lumbar leaf width is 8.51, 15.30, 20.36 and 17.45, respectively. [Conclusion] This study revealed the characteristics of genetic variation of tobacco traits, which provided theoretical basis for the breeding of new varieties.展开更多
The paste viscosity attributes of starch,measured by rapid visco analyzer(RVA),are important factors for the evaluation of the cooking and eating qualities of rice in breeding programs.To determine the genetic roots o...The paste viscosity attributes of starch,measured by rapid visco analyzer(RVA),are important factors for the evaluation of the cooking and eating qualities of rice in breeding programs.To determine the genetic roots of the paste viscosity attributes of rice grains,quantitative trait loci(QTLs)associated with the paste viscosity attributes were mapped,using a double haploid(DH)population derived from Zhongjiazao 17(YK17),a super rice variety,crossed with D50,a tropic japonica variety.Fifty-four QTLs,for seven parameters of the RVA profiles,were identified in three planting seasons.The 54 QTLs were located on all of the 12 chromosomes,with a single QTL explaining 5.99 to 47.11%of phenotypic variation.From the QTLs identified,four were repeatedly detected under three environmental conditions and the other four QTLs were repeated under two environments.Most of the QTLs detected for peak viscosity(PKV),trough viscosity(TV),cool paste viscosity(CPV),breakdown viscosity(BDV),setback viscosity(SBV),and peak time(PeT)were located in the interval of RM 6775-RM 3805 under all three environmental conditions,with the exception of pasting temperature(PaT).For digenic interactions,eight QTLs with six traits were identified for additivexenvironment interactions in all three planting environments.The epistatic interactions were estimated only for PKV,SBV and PaT.The present study will facilitate further understanding of the genetic architecture of eating and cooking quality(ECQ)in the rice quality improvement program.展开更多
基金supported by Murdoch University and the Australia Grains Research&Development Corporation(GRDC)(grant number UMU00048)the Department of Primary Industries and Regional Development(DPIRD),Western AustraliaKalyx Australia Pty Ltd。
文摘Reproductive stage frost poses a major constraint for wheat production in countries such as Australia.However,little progress has been made in identifying key genes to overcome the constraint.In the present study,a severe frost event hit two large-scale field trials consisting of six doubled haploid(DH)wheat populations at reproductive stage(young microspore stage)in Western Australia,leading to the identification of 30 robust frost QTL on 17 chromosomes.The major 18 QTL with the phenotype variation over 9.5%were located on 13 chromosomes including 2 A,2 B,2 D,3 A,4 A,4 B,4 D,5 A,5 D,6 D,7 A,7 B and7 D.Most frost QTL were closely linked to the QTL of anthesis,maturity,Zadok stages as well as linked to anthesis related genes.Out of those,six QTL were repetitively detected on the homologous regions on 2 B,4 B,4 D,5 A,5 D,7 A in more than two populations.Results showed that the frost damage is associated with alleles of Vrn-A1 a,Vrn-D1 a,Rht-B1 b,Rht-D1 b,and the high copy number of Ppd-B1.However,anthesis QTL and anthesis related genes of Vrn-B1 a and Ta FT3-1 B on chromosomes 5 B and 1 B did not lead to frost damage,indicating that these early-flowering phenotype related genes are compatible with frost tolerance and thus can be utilised in breeding.Our results also indicate that wild-type alleles Rht-B1 a and Rht-D1 a can be used when breeding for frost-tolerant varieties without delaying flowering time.
基金Supported by Project of Yunnan Tobacco Company(2010YN02,2011YN04)~~
文摘[Objective] This study aimed to conduct genetic analysis on agronomic traits of doubled haploid population in tobacco. [Method] Main agronomic traits of DH population in tobacco were investigated, including plant height, effective number of leaves, lumbar leaf length, lumbar leaf width, intermodal distance and pericaulome length. Based on the estimation of skewness coefficient and kurtosis coefficient of Hongda x Hicks Broad Leaf populations, the number of gene pairs was calculated. [Result] The number of gene pairs controlling plant height (topping plant height and natural plant height) is 10.20 and 10.80, respectively; the number of gene pairs con- trolling leaf number (effective number of leaves and natural number of leaves) is 6.21 and 6.25, respectively; the number of gene pairs controlling pericaulome length, intermodal distance, lumbar leaf length and lumbar leaf width is 8.51, 15.30, 20.36 and 17.45, respectively. [Conclusion] This study revealed the characteristics of genetic variation of tobacco traits, which provided theoretical basis for the breeding of new varieties.
基金This research was financially supported by the National Key Research and Development Program of China(2017YFD0100300,2016YFD0101801)the National S&T Major Project,China(2016ZX08001006)+1 种基金the National Nature Science Foundation of China(31871597)the Zhejiang Science and Technology Projects,China(L GN18C130006).
文摘The paste viscosity attributes of starch,measured by rapid visco analyzer(RVA),are important factors for the evaluation of the cooking and eating qualities of rice in breeding programs.To determine the genetic roots of the paste viscosity attributes of rice grains,quantitative trait loci(QTLs)associated with the paste viscosity attributes were mapped,using a double haploid(DH)population derived from Zhongjiazao 17(YK17),a super rice variety,crossed with D50,a tropic japonica variety.Fifty-four QTLs,for seven parameters of the RVA profiles,were identified in three planting seasons.The 54 QTLs were located on all of the 12 chromosomes,with a single QTL explaining 5.99 to 47.11%of phenotypic variation.From the QTLs identified,four were repeatedly detected under three environmental conditions and the other four QTLs were repeated under two environments.Most of the QTLs detected for peak viscosity(PKV),trough viscosity(TV),cool paste viscosity(CPV),breakdown viscosity(BDV),setback viscosity(SBV),and peak time(PeT)were located in the interval of RM 6775-RM 3805 under all three environmental conditions,with the exception of pasting temperature(PaT).For digenic interactions,eight QTLs with six traits were identified for additivexenvironment interactions in all three planting environments.The epistatic interactions were estimated only for PKV,SBV and PaT.The present study will facilitate further understanding of the genetic architecture of eating and cooking quality(ECQ)in the rice quality improvement program.