We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investig...We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.展开更多
Laser shaping was introduced to maskless projection soft lithography by using digital micro-mirror device (DMD). The predesigned intensity pattern was imprinted onto the DMD and the input laser beam with a Gaussian or...Laser shaping was introduced to maskless projection soft lithography by using digital micro-mirror device (DMD). The predesigned intensity pattern was imprinted onto the DMD and the input laser beam with a Gaussian or quasi-Gaussian distribution will carry the pattern on DMD to etch the resin. It provides a method of precise control of laser beam shapes and?photon-induced curing behavior of resin. This technology provides an accurate micro-fabrication of microstructures used for micro-systems. As a virtual mask generator and a binary-amplitude spatial light modulator, DMD is equivalent to the masks in the conventional exposure system. As the virtual masks and shaped laser beam can be achieved flexibly, it is a good method of precision soft lithography for 2D/3D microstructures.展开更多
Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditiona...Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.展开更多
Dynamic infrared scene simulation is for discovering and solving the problems encountered in designing, developing and manufacturing infrared imaging guidance weapons. The infrared scene simulation is explored by usin...Dynamic infrared scene simulation is for discovering and solving the problems encountered in designing, developing and manufacturing infrared imaging guidance weapons. The infrared scene simulation is explored by using the digital grayscale modulation method. The infrared image modulation model of a digital micro-mirror device (DMD) is established and then the infrared scene simulator prototype which is based on DMD grayscale modulation is developed. To evaluate its main parameters such as resolution, contrast, minimum temperature difference, gray scale, various DMD subsystems such as signal decoding, image normalization, synchronization drive, pulse width modulation (PWM) and DMD chips are designed. The infrared scene simulator is tested on a certain infrared missile seeker. The test results show preliminarily that the infrared scene simulator has high gray scale, small geometrical distortion and highly resolvable imaging resolution and contrast and yields high-fidelity images, thus being able to meet the requirements for the infrared scene simulation inside a laboratory.展开更多
高动态范围的图像可用于同时探测具有较大对比度的亮暗目标,利用数字微镜(DMD)获取高动态范围图像是目前最为先进的一种技术。本文在分析DMD工作原理的基础上,设计了一种像素级的高动态范围图像获取系统,该系统由光学系统、机械系统、DM...高动态范围的图像可用于同时探测具有较大对比度的亮暗目标,利用数字微镜(DMD)获取高动态范围图像是目前最为先进的一种技术。本文在分析DMD工作原理的基础上,设计了一种像素级的高动态范围图像获取系统,该系统由光学系统、机械系统、DMD像素级调光算法及成像单元组成。光学系统采用二次成像光路,其中第一次成像物镜采用像方远心光路,第二次成像的转置镜头采用放大倍率近似1∶1的准对称结构,机械系统采用光学元件的包边设计和定心车工艺,达到秒级的光学装配精度;DMD像素级调光算法采用搜索单个微镜像素在图像帧周期间的控制权值实现,成像单元可同时兼顾科学级12 bit s CMOS和8 bit CCD,设计完成的原理样机验证了系统设计的正确性,其获取的图像动态范围可达140 d B以上,远高于传统摄像机78 d B的动态范围。展开更多
基金Supported by the Natural Science Foundation of Beijing under Grant Nos 2162033 and 7182091the National Natural Science Foundation of China under Grant No 21627813
文摘We present a digital micromirror device(DMD) based superpixel method for focusing light through scattering media by modulating the complex field of incident light. Firstly, we numerically and experimentally investigate focusing light through a scattering sample using the superpixel methods with different target complex fields.Then, single-point and multiple-point focusing experiments are performed using this superpixel-based complex modulation method. In our experiment, up to 71.5% relative enhancement is realized. The use of the DMDbased superpixel method for the control of the complex field of incident light opens an avenue to improve the enhancement of focusing light through scattering media.
文摘Laser shaping was introduced to maskless projection soft lithography by using digital micro-mirror device (DMD). The predesigned intensity pattern was imprinted onto the DMD and the input laser beam with a Gaussian or quasi-Gaussian distribution will carry the pattern on DMD to etch the resin. It provides a method of precise control of laser beam shapes and?photon-induced curing behavior of resin. This technology provides an accurate micro-fabrication of microstructures used for micro-systems. As a virtual mask generator and a binary-amplitude spatial light modulator, DMD is equivalent to the masks in the conventional exposure system. As the virtual masks and shaped laser beam can be achieved flexibly, it is a good method of precision soft lithography for 2D/3D microstructures.
基金funded by the National Natural Science Foundation of China(62125504,61827825,and 31901059)Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001)Open Project Program of Wuhan National Laboratory for Optoelectronics(2021WNLOKF007).
文摘Structured illumination microscopy(SIM)achieves super-resolution(SR)by modulating the high-frequency information of the sample into the passband of the optical system and subsequent image reconstruction.The traditional Wiener-filtering-based reconstruction algorithm operates in the Fourier domain,it requires prior knowledge of the sinusoidal illumination patterns which makes the time-consuming procedure of parameter estimation to raw datasets necessary,besides,the parameter estimation is sensitive to noise or aberration-induced pattern distortion which leads to reconstruction artifacts.Here,we propose a spatial-domain image reconstruction method that does not require parameter estimation but calculates patterns from raw datasets,and a reconstructed image can be obtained just by calculating the spatial covariance of differential calculated patterns and differential filtered datasets(the notch filtering operation is performed to the raw datasets for attenuating and compensating the optical transfer function(OTF)).Experiments on reconstructing raw datasets including nonbiological,biological,and simulated samples demonstrate that our method has SR capability,high reconstruction speed,and high robustness to aberration and noise.
基金co-supported by China Postdoctoral Science Foundation (20090461314)
文摘Dynamic infrared scene simulation is for discovering and solving the problems encountered in designing, developing and manufacturing infrared imaging guidance weapons. The infrared scene simulation is explored by using the digital grayscale modulation method. The infrared image modulation model of a digital micro-mirror device (DMD) is established and then the infrared scene simulator prototype which is based on DMD grayscale modulation is developed. To evaluate its main parameters such as resolution, contrast, minimum temperature difference, gray scale, various DMD subsystems such as signal decoding, image normalization, synchronization drive, pulse width modulation (PWM) and DMD chips are designed. The infrared scene simulator is tested on a certain infrared missile seeker. The test results show preliminarily that the infrared scene simulator has high gray scale, small geometrical distortion and highly resolvable imaging resolution and contrast and yields high-fidelity images, thus being able to meet the requirements for the infrared scene simulation inside a laboratory.
文摘高动态范围的图像可用于同时探测具有较大对比度的亮暗目标,利用数字微镜(DMD)获取高动态范围图像是目前最为先进的一种技术。本文在分析DMD工作原理的基础上,设计了一种像素级的高动态范围图像获取系统,该系统由光学系统、机械系统、DMD像素级调光算法及成像单元组成。光学系统采用二次成像光路,其中第一次成像物镜采用像方远心光路,第二次成像的转置镜头采用放大倍率近似1∶1的准对称结构,机械系统采用光学元件的包边设计和定心车工艺,达到秒级的光学装配精度;DMD像素级调光算法采用搜索单个微镜像素在图像帧周期间的控制权值实现,成像单元可同时兼顾科学级12 bit s CMOS和8 bit CCD,设计完成的原理样机验证了系统设计的正确性,其获取的图像动态范围可达140 d B以上,远高于传统摄像机78 d B的动态范围。