One of the primary forestry research interests lies in estimating forest stand parameters by applying empirical or semi-empirical model to establish the relationship between the forest stand parameters and remote sens...One of the primary forestry research interests lies in estimating forest stand parameters by applying empirical or semi-empirical model to establish the relationship between the forest stand parameters and remote sensing data. Using remote sensing image and the inventory data from 2 compartments in northeast Florida, U.S.A., this paper explored the correlation between forest stand parameters and Landsat TM spectral digital number (DN) value. Results showed that less than 50% of the total variance could be explained by linear regression models with only either a single band or such vegetation indices as vegetation index (VI) or normalized difference vegetation index (NDVI) as predicators. In consequence, multi-linear regression models which synthesized more predicators were introduced to estimate forest parameters. Regression results were tested in terms of the other group of data, and verification showed a better capability of explaining over 75% variance except for forest density. The weakness and further improvement of prediction models were also discussed in the article. This paper is expected to provide a better understanding of the relationship between TM spectral and forest characteristics展开更多
文摘One of the primary forestry research interests lies in estimating forest stand parameters by applying empirical or semi-empirical model to establish the relationship between the forest stand parameters and remote sensing data. Using remote sensing image and the inventory data from 2 compartments in northeast Florida, U.S.A., this paper explored the correlation between forest stand parameters and Landsat TM spectral digital number (DN) value. Results showed that less than 50% of the total variance could be explained by linear regression models with only either a single band or such vegetation indices as vegetation index (VI) or normalized difference vegetation index (NDVI) as predicators. In consequence, multi-linear regression models which synthesized more predicators were introduced to estimate forest parameters. Regression results were tested in terms of the other group of data, and verification showed a better capability of explaining over 75% variance except for forest density. The weakness and further improvement of prediction models were also discussed in the article. This paper is expected to provide a better understanding of the relationship between TM spectral and forest characteristics