期刊文献+
共找到705篇文章
< 1 2 36 >
每页显示 20 50 100
The DNA damage repair complex MoMMS21-MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae
1
作者 Yue Jiang Rong Wang +8 位作者 Lili Du Xueyu Wang Xi Zhang Pengfei Qi Qianfei Wu Baoyi Peng Zonghua Wang Mo Wang Ya Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1956-1966,共11页
The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic ... The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic fungi,particularly in the highly destructive rice blast fungus Magnaporthe oryzae,remains unknown.In this study,we functionally characterized the homologues of this complex,MoMMS21 and MoSMC5,in M.oryzae.We first demonstrated the importance of DNA damage repair in M.oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth,infection-related development and pathogenicity in this fungus.Additionally,we discovered that MoMMS21 and MoSMC5 interacted in the nuclei,suggesting that they also function as a complex in M.oryzae.Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M.oryzae,while only MoMMS21 deletion affected growth and sensitivity to phleomycin,indicating its specific involvement in DNA damage repair.Overall,our results provide insights into the roles of MoMMS21 and MoSMC5 in M.oryzae,highlighting their functions beyond DNA damage repair. 展开更多
关键词 Magnaporthe oryzae MMS21 SMC5 dna damage repair PATHOGENICITY
下载PDF
LncRNA HOTAIR promotes DNA damage repair and radioresistance by targeting ATR in colorectal cancer
2
作者 HAIQING HU HAO YANG +3 位作者 SHUAISHUAI FAN XUE JIA YING ZHAO HONGRUI LI 《Oncology Research》 SCIE 2024年第8期1335-1346,共12页
Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal c... Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal cancer(CRC)progression.The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells,as well as the underlying mechanism.The relative expression levels of HOTAIR were examined in 70 pairs of CRC tumor and para-cancerous tissues,as well as in radiosensitive and radioresistant samples.The correlations between HOTAIR expression levels and clinical features of patients with CRC were assessed using the Chi-square test.Functional assays such as cell proliferation,colony formation and apoptosis assays were conducted to determine the radiosensitivity in CRC cells with HOTAIR silencing after treatment with different doses of radiation.RNA pull-down assay andfluorescence in situ hybridization(FISH)were used to determine the interaction between HOTAIR and DNA damage response mediator ataxia-telangiectasia mutated-and Rad3-related(ATR).HOTAIR was significantly upregulated in CRC tumor tissues,especially in radioresistant tumor samples.The elevated expression of HOTAIR was correlated with more advanced histological grades,distance metastasis and the poor prognosis in patients with CRC.Silencing HOTAIR suppressed the proliferation and promoted apoptosis and radiosensitivity in CRC cells.HOTAIR knockdown also inhibited the tumorigenesis of CRC cells and enhanced the sensitivity to radiotherapy in a mouse xenograft model.Moreover,the data showed that HOTAIR could interact with ATR to regulate the DNA damage repair signaling pathway.Silencing HOTAIR impaired the ATR-ATR interacting protein(ATRIP)complex and signaling in cell cycle progression.Collectively,the present results indicate that lncRNA HOTAIR facilitates the DNA damage response pathway and promotes radioresistance in CRC cells by targeting ATR. 展开更多
关键词 LncRNA HOTAIR CRC RADIORESISTANCE dna damage repair ATR
下载PDF
DNA Damage and Repair of Two Ecotypes of Phragmites communis Subjected to Water Stress 被引量:3
3
作者 王俊刚 张承烈 《Acta Botanica Sinica》 CSCD 2001年第5期490-494,共5页
In order to thoroughly understand the mechanism Of drought resistance in plants at DNA level, the DNA damage of two ecotypes of reeds (Phragmites communis T.) stressed by PEG 6000 was analyzed by means of fluorescence... In order to thoroughly understand the mechanism Of drought resistance in plants at DNA level, the DNA damage of two ecotypes of reeds (Phragmites communis T.) stressed by PEG 6000 was analyzed by means of fluorescence analysis of DNA unwinding (FADU). The results showed that the residual double strand DNA percentages (dsDNA%) in dune reed (DR) were significantly higher than those in swamp reed (SR) treated with either 20% or 30% PEG 6000. This meant that the DNA of DR was less damaged in comparison with SR. Similarly, DR resisted DNA damage more strongly than SR as reactive oxygen species (ROS) increased by adding ROS producers diethyldithio carbamate (DDC), H2O2 and Fe2+ of different concentrations. Meanwhile, treating PEG stressed SR with ROS scavengers such as dimethyl sulphoxide (DMSO) and ascorbic acid (Vc) resulted in the reduction of DNA damage, suggesting that ROS could cause DNA damage. In addition, the DNA repair for water-stressed reeds indicated that DR repaired DNA damage much faster and more completely. This might be the first indication that drought stress led to DNA damage in plants and that drought resistance of plants was closely related to DNA damage and repair. 展开更多
关键词 dune reed swamp reed water stress reactive oxygen species dna damage of plants in vivo dna repair
下载PDF
Association Between Polymorphisms of DNA Repair Gene XRCC1 and DNA Damage in Asbestos-Exposed Workers 被引量:1
4
作者 XIAO-HONG ZHAO CUANG JIA +4 位作者 YONG-QUAN LIU SHAO-WEI LIU LEI YAN YU JIN NIAN LIU 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2006年第3期232-238,共7页
Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestosexposed workers and 101 control workers in Qingdao City of China and to investigate the possible association... Objective To compare the asbestos-induced DNA damage and repair capacities of DNA damage between 104 asbestosexposed workers and 101 control workers in Qingdao City of China and to investigate the possible association between polymorphisms in codon 399 of XRCC1 and susceptibility to asbestosis. Methods DNA damage levels in peripheral blood lymphocytes were determined by comet assay, and XRCC1 genetic polymorphisms of DNA samples from 51 asbestosis cases and 53 non-asbestosis workers with a similar asbestos exposure history were analyzed by PCR/RFLP. Results The basal comet scores (3.95±2.95) were significantly higher in asbestos-exposed workers than in control workers (0.10±0.28). After 1 h H2O2 stimulation, DNA damage of lymphocytes exhibited different increases. After a 4 h repair period, the comet scores were 50.98±19.53 in asbestos-exposed workers and 18.32±12.04 in controls. The residual DNA damage (RD) was significantly greater (P〈0.01) in asbestos-exposed workers (35.62%) than in controls (27.75%). XRCC1 genetic polymorphism in 104 asbestos-exposed workers was not associated with increased risk of asbestosis. But compared with polymorphisms in the DNA repair gene XRCC1 (polymorphisms in codon 399) and the DNA damage induced by asbestos, the comet scores in asbestosis cases with Gin/Gin, Gln/Arg, and Arg/Arg were 40.26±18.94, 38.03±28.22, and 32.01±11.65, respectively, which were higher than those in non-asbestosis workers with the same genotypes (25.58±11.08, 37.08±14.74, and 29.38±10.15). There were significant differences in the comet scores between asbestosis cases and non-asbestosis workers with Gin/Gin by Student's t-test (P〈0.05 or 0.01). The comet scores were higher in asbestosis workers with Gin/Gin than in those with Arg/Arg and in non-asbestosis workers exposed to asbestos, but without statistically significant difference. Conclusions Exposure to asbestos may be related to DNA damage or the capacity of cells to repair H2O2-induced DNA damage. DNA repair gene XRCC 1 codon 399 may be responsible for the inter-individual susceptibility in DNA damage and repair capacities. 展开更多
关键词 Asbestos ASBESTOSIS dna damage XRCC 1 dna repair POLYMORPHISMS Comet assays
下载PDF
Dynamic Changes in DNA Damage and Repair Biomarkers with Employment Length among Nickel Smelting Workers 被引量:2
5
作者 WU Shan BAI Ya Na +5 位作者 PU Hong Quan HE Jie ZHENG Tong Zhang LI Hai Yan DAI Min CHENG Ning 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第9期679-682,共4页
Our study explored the dynamic changes in andthe relationship between the DNA damage marker8-hydroxy-2'-deoxyguanosine (8-OHdG) and theDNA repair marker 8-hydroxyguanine DNAglycosidase 1 (hOGG1) according to the ... Our study explored the dynamic changes in andthe relationship between the DNA damage marker8-hydroxy-2'-deoxyguanosine (8-OHdG) and theDNA repair marker 8-hydroxyguanine DNAglycosidase 1 (hOGG1) according to the length ofoccupational employment in nickel smeltingworkers. One hundred forty nickel-exposedsmelting workers and 140 age-matched unexposedoffice workers were selected from the Jinchangcohort. The 8-OHdG levels in smelting workers wassignificantly higher than in office workers (Z=-8.688,P〈0.05) and the 8-OHdG levels among nickelsmelting workers in the 10-14 y employment lengthcategory was significantly higher than among allpeers. The hOGG1 levels among smelting workerswere significantly lower than those of non-exposedworkers (Z=-8.948, P〈0.05). There were significantdifferences between employment length andhOGG1 levels, with subjects employed in nickelsmelting for 10-14 y showing the highest levels ofhOGG1. Correlation analysis showed positivecorrelations between 8-OHdG and hOGG1 levels(r=0.413; P〈0.01). DNA damage was increased withemployment length among nickel smelting workersand was related to the inhibition of hOGG1 repaircapacity. 展开更多
关键词 dna Dynamic Changes in dna damage and repair Biomarkers with Employment Length among Nickel Smelting Workers LENGTH
下载PDF
The Role of DNA Mismatch Repair and Recombination in the Processing of DNA Alkylating Damage in Living Yeast Cells 被引量:1
6
作者 Hernan Flores-Rozas Lahcen Jaafar Ling Xia 《Advances in Bioscience and Biotechnology》 2015年第6期408-418,共11页
It is proposed that mismatch repair (MMR) mediates the cytotoxic effects of DNA damaging agents by exerting a futile repair pathway which leads to double strand breaks (DSBs). Previous reports indicate that the sensit... It is proposed that mismatch repair (MMR) mediates the cytotoxic effects of DNA damaging agents by exerting a futile repair pathway which leads to double strand breaks (DSBs). Previous reports indicate that the sensitivity of cells defective in homologous recombination (HR) to DNA alkylation is reduced by defects in MMR genes. We have assessed the contribution of different MMR genes to the processing of alkylation damage in vivo. We have directly visualized recombination complexes formed upon DNA damage using fluorescent protein (FP) fusions. We find that msh6 mutants are more resistant than wild type cells to MNNG, and that an msh6 mutation rescues the sensitivity of rad52 strains more efficiently than an msh3 mutation. Analysis of RAD52-GFP tagged strains indicate that MNNG increases repair foci formation, and that the inactivation of the MHS2 and MSH6 genes but not the MSH3 gene result in a reduction of the number of foci formed. In addition, in the absence of HR, NHEJ could process the MNNG-induced DSBs as indicated by the formation of NHEJ-GFP tagged foci. These data suggest that processing of the alkylation damage by MMR, mainly by MSH2-MSH6, is required for recruitment of recombination proteins to the damage site for repair. 展开更多
关键词 dna MISMATCH repair Recombination dna damage Non-Homologous End Joining
下载PDF
Evaluation of 30 DNA damage response and 6 mismatch repair gene mutations as biomarkers for immunotherapy outcomes across multiple solid tumor types 被引量:1
7
作者 Zhe Gong Yue Yang +1 位作者 Jieyun Zhang Weijian Guo 《Cancer Biology & Medicine》 SCIE CAS CSCD 2021年第4期1080-1091,共12页
Objective:DNA damage response(DDR)genes have low mutation rates,which may restrict their clinical applications in predicting the outcomes of immune checkpoint inhibitor(ICI)treatment.Thus,a systemic analysis of multip... Objective:DNA damage response(DDR)genes have low mutation rates,which may restrict their clinical applications in predicting the outcomes of immune checkpoint inhibitor(ICI)treatment.Thus,a systemic analysis of multiple DDR genes is needed to identify potential biomarkers of ICI efficacy.Methods:A total of 39,631 patients with mutation data were selected from the cBioPortal database.A total of 155 patients with mutation data were obtained from the Fudan University Shanghai Cancer Center(FUSCC).A total of 1,660 patients from the MSK-IMPACT cohort who underwent ICI treatment were selected for survival analysis.A total of 249 patients who underwent ICI treatment from the Dana-Farber Cancer Institute(DFCI)cohort were obtained from a published dataset.The Cancer Genome Atlas(TCGA)level 3 RNA-Seq version 2 RSEM data for gastric cancer were downloaded from cBioPortal.Results:Six MMR and 30 DDR genes were included in this study.Six MMR and 20 DDR gene mutations were found to predict the therapeutic efficacy of ICI,and most of them predicted the therapeutic efficacy of ICI,in a manner dependent on TMB,except for 4 combined DDR gene mutations,which were associated with the therapeutic efficacy of ICI independently of the TMB.Single MMR/DDR genes showed low mutation rates;however,the mutation rate of all the MMR/DDR genes associated with the therapeutic efficacy of ICI was relatively high,reaching 10%–30%in several cancer types.Conclusions:Coanalysis of multiple MMR/DDR mutations aids in selecting patients who are potential candidates for immunotherapy. 展开更多
关键词 Immune checkpoint inhibitor therapy prediction of efficacy tumor mutation burden mismatch repair deficiency dna damage response genes
下载PDF
Development of a prognostic signature for esophageal cancer based on a novel 7-DNA damage repair genes signature
8
作者 JIAMING ZHAN WEIHUA WANG +2 位作者 YANLEI TANG NING ZHOU DAOWEN JIANG 《BIOCELL》 SCIE 2022年第12期2601-2613,共13页
Esophageal cancer(EC)was an aggressive malignant neoplasm characterized by high morbidity and poor prognosis.Identifying the changes in DNA damage repair genes helps to better understand the mechanisms of carcinoma pr... Esophageal cancer(EC)was an aggressive malignant neoplasm characterized by high morbidity and poor prognosis.Identifying the changes in DNA damage repair genes helps to better understand the mechanisms of carcinoma progression.In this study,by comparing EC samples and normal samples,we found a total of 132 DDR expression with a significant difference.Moreover,we revealed higher expression of POLN,PALB2,ATM,PER1,TOP3B and lower expression of HMGB1,UBE2B were correlated to longer OS in EC.In addition,a prognostic risk score based on 7 DDR gene expression(POLN,HMGB1,TOP3B,PER1,UBE2B,ATM,PALB2)was constructed for the prognosis of EC.Meanwhile,EC cancer samples were divided into 3 subtypes based on 132 DDR genes expressions.Clinical profile analysis showed cluster C1 and C2 showed a similar frequency of T2,which was remarked higher than that in cluster 3.Moreover,we found the immune cell inflation levels were significantly changed in different subtypes of EC.The infiltration levels of T cell CD8+,B cell and NK cells were greatly higher in cluster 2 than that in cluster 1 and cluster 3.The results showed T cell CD4+infiltration levels were dramatically higher in cluster 1 than that in cluster 2 and cluster 3.Finally,we perform bioinformatics analysis of DEGs among 3 subtypes of EC and found DDR genes may be related to multiple signaling,such as Base excision repair,Cell cycle,Hedgehog signaling pathway,and Glycolysis/Gluconeogenesis.These results showed DDR genes may serve as new target for the prognosis of EC and prediction of the potential response of immune therapy in EC. 展开更多
关键词 Esophageal cancer dna damage repair genes SIGNATURE Tumor immune infiltration
下载PDF
DNA损伤修复相关通路的合成致死靶点研究及其在卵巢癌中的应用和前景
9
作者 程洪艳 栾文庆 昌晓红 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2024年第6期740-748,共9页
DNA损伤引发细胞启动一系列DNA损伤应答(DNA damage response,DDR),包括DNA损伤修复、细胞周期检查点激活、细胞周期阻滞、各种细胞内信号转导途径的活化和细胞凋亡等。DNA损伤修复(DNA damage repair)是细胞维持基因组稳定性的重要机制... DNA损伤引发细胞启动一系列DNA损伤应答(DNA damage response,DDR),包括DNA损伤修复、细胞周期检查点激活、细胞周期阻滞、各种细胞内信号转导途径的活化和细胞凋亡等。DNA损伤修复(DNA damage repair)是细胞维持基因组稳定性的重要机制,于2015年获得诺贝尔化学奖。DNA损伤修复途径主要包括:碱基切除修复(base-excision repair,BER)、核苷酸切除修复(nucleotide excision repair,NER)、错配修复(mismatch repair,MMR)、同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)等,分别在DNA单链断裂(single-strand break,SSB)或双链断裂(double-strand break,DSB)等损伤修复中发挥重要作用。DNA损伤修复缺陷与肿瘤发生发展密切相关,同时也是肿瘤治疗的重要靶点。DNA损伤修复通路的多聚ADP核糖聚合酶(poly-ADP-ribose polymerase,PARP)与乳腺癌易感基因BRCA 1/2等存在合成致死(synthetic lethality)作用,使PARP抑制剂(PARP inhibitor,PARPi)成为第一个也是目前唯一上市的肿瘤治疗合成致死靶药。PARPi在卵巢癌及多种实体瘤治疗中疗效良好,使DNA损伤修复及相关DDR通路的合成致死靶药研发成为热点,其他在研靶点主要包括:共济失调毛细血管扩张突变蛋白(ataxia telangiectasia-mutated protein,ATM)、共济失调毛细血管扩张与RAD3相关蛋白(ataxia telangiectasia and Rad3 related protein,ATR)、DNA依赖性蛋白质激酶催化亚单位(DNA-dependent protein kinase catalytic subunit,DNA-PKcs)、细胞周期检测点激酶1(checkpoint kinase1,CHK1)、细胞周期检测点激酶2(checkpoint kinase 2,CHK2)、阻止有丝分裂的蛋白质激酶WEE1等。PARPi与其他DDR靶药、抗血管生成药物及免疫检查点抑制剂的联用,有可能成为克服PARPi耐药、提高疗效的有效手段和发展前景。本文针对DNA损伤修复及相关DDR通路的关键分子和潜在肿瘤治疗靶点进行综述,阐述了DNA损伤修复相关通路的合成致死靶点研究及在卵巢癌的应用和前景,为基础研究及临床应用提供指导。 展开更多
关键词 卵巢癌 dna损伤应答 dna损伤修复 PARP抑制剂 合成致死 靶向治疗
下载PDF
转录因子MYB转录调控MTFR2通过DNA损伤修复促进胃癌细胞化疗耐药性
10
作者 李春兴 迪力旦·纳斯尔 +1 位作者 托合提阿吉·巴拉提 阿不都外力·吾守尔 《遵义医科大学学报》 2024年第9期857-867,共11页
目的探究v-myb禽成髓细胞病病毒癌基因同源物(MYB)转录调控线粒体裂变调节因子2(MTFR2)对胃癌(GC)细胞顺铂(DDP)耐药性的影响及分子作用机制。方法TCGA数据库分析GC中差异mRNA并预测上游调控分子,qRT-PCR检测MTFR2和MYB的表达,双荧光素... 目的探究v-myb禽成髓细胞病病毒癌基因同源物(MYB)转录调控线粒体裂变调节因子2(MTFR2)对胃癌(GC)细胞顺铂(DDP)耐药性的影响及分子作用机制。方法TCGA数据库分析GC中差异mRNA并预测上游调控分子,qRT-PCR检测MTFR2和MYB的表达,双荧光素酶和染色质免疫共沉淀(ChIP)实验验证MTFR2和MYB的调控关系,细胞计数盒8(CCK-8)检测细胞活力并计算IC_(50)值,流式细胞术检测细胞周期和细胞凋亡,彗星实验检测DNA损伤,蛋白质免疫印迹法检测DNA损伤相关蛋白(γ-H2AX、ATM、p-ATM)的表达。结果MTFR2在GC组织和细胞中显著高表达,敲低MTFR2能够降低细胞增殖,阻滞S期,诱导细胞凋亡,促进DNA损伤和DDP敏感性。生信预测MTFR2存在上游转录因子MYB,MYB在GC组织和细胞中的表达显著上调,双荧光素酶和ChIP验证了MTFR2启动子区域与MYB的结合关系。回复实验发现进一步过表达MTFR2能够逆转敲低MYB对GC细胞增殖和DDP耐药性的抑制作用。结论MYB上调MTFR2的表达通过DNA损伤途径促进GC细胞增殖和DDP耐药,表明靶向MYB/MTFR2调控轴可能是克服GC DDP耐药性的潜在途径。 展开更多
关键词 V-myb禽成髓细胞瘤病毒癌基因同源物 线粒体裂变调节因子2 dna损伤修复 胃癌 顺铂耐药
下载PDF
Perspectives on the combination of radiotherapy and targeted therapy with DNA repair inhibitors in the treatment of pancreatic cancer 被引量:7
11
作者 Shih-Hung Yang Ting-Chun Kuo +7 位作者 Hsu Wu Jhe-Cyuan Guo Chiun Hsu Chih-Hung Hsu Yu-Wen Tien Kun-Huei Yeh Ann-Lii Cheng Sung-Hsin Kuo 《World Journal of Gastroenterology》 SCIE CAS 2016年第32期7275-7288,共14页
Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair... Pancreatic cancer is highly lethal. Current research that combines radiation with targeted therapy may dramatically improve prognosis. Cancerous cells are characterized by unstable genomes and activation of DNA repair pathways, which are indicated by increased phosphorylation of numerous factors, including H2 AX, ATM, ATR, Chk1, Chk2, DNA-PKcs, Rad51, and Ku70/Ku80 heterodimers. Radiotherapy causes DNA damage. Cancer cells can be made more sensitive to the effects of radiation(radiosensitization) through inhibition of DNA repair pathways. The synergistic effects, of two or more combined non-lethal treatments, led to coadministration of chemotherapy and radiosensitization in BRCA-defective cells and patients, with promising results. ATM/Chk2 and ATR/Chk1 pathways are principal regulators of cell cycle arrest, following DNA doublestrand or single-strand breaks. DNA double-stranded breaks activate DNA-dependent protein kinase, catalytic subunit(DNA-PKcs). It forms a holoenzyme with Ku70/Ku80 heterodimers, called DNA-PK, which catalyzes the joining of nonhomologous ends. This is the primary repair pathway utilized in human cells after exposure to ionizing radiation. Radiosensitization, induced by inhibitors of ATM, ATR, Chk1, Chk2, Wee1, PP2 A, or DNA-PK, has been demonstrated in preclinical pancreatic cancer studies. Clinical trials are underway. Development of agents that inhibit DNA repair pathways to be clinically used in combination with radiotherapy is warranted for the treatment of pancreatic cancer. 展开更多
关键词 RADIOTHERAPY PANCREATIC cancer dna damage dna repair Molecular TARGETS
下载PDF
A brief history of the DNA repair field 被引量:7
12
作者 Errol C Friedberg 《Cell Research》 SCIE CAS CSCD 2008年第1期3-7,共5页
The history of the repair of damaged DNA can be traced to the mid-1930s. Since then multiple DNA repair mechanisms, as well as other biological responses to DNA damage, have been discovered and their regulation has be... The history of the repair of damaged DNA can be traced to the mid-1930s. Since then multiple DNA repair mechanisms, as well as other biological responses to DNA damage, have been discovered and their regulation has been studied. This article briefly recounts the early history of this field. 展开更多
关键词 dna repair biological responses to dna damage ultraviolet light excision repair enzymatic photoreactivation mismatch repair dna damage tolerance recombination
下载PDF
DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies 被引量:4
13
作者 Qi-En Wang 《World Journal of Biological Chemistry》 CAS 2015年第3期57-64,共8页
The identification of cancer stem cells(CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells,CSCs als... The identification of cancer stem cells(CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells,CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response(DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored. 展开更多
关键词 CANCER stem cell dna damage response dna repair CANCER THERAPY
下载PDF
Epigenetic reduction of DNA repair in progression to gastrointestinal cancer 被引量:2
14
作者 Carol Bernstein Harris Bernstein 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2015年第5期30-46,共17页
Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal(GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. Howev... Deficiencies in DNA repair due to inherited germ-line mutations in DNA repair genes cause increased risk of gastrointestinal(GI) cancer. In sporadic GI cancers, mutations in DNA repair genes are relatively rare. However, epigenetic alterations that reduce expression of DNA repair genes are frequent in sporadic GI cancers. These epigenetic reductions are also found in field defects that give rise to cancers. Reduced DNA repair likely allows excessive DNA damages to accumulate in somatic cells. Then either inaccurate translesion synthesis past the un-repaired DNA damages or error-prone DNA repair can cause mutations. Erroneous DNA repair can also cause epigenetic alterations(i.e., epimutations, transmitted through multiple replication cycles). Some of these mutations and epimutations may cause progression to cancer. Thus, deficient or absent DNA repair is likely an important underlying cause of cancer. Whole genome sequencing of GI cancers show that between thousands to hundreds of thousands of mutations occur in these cancers. Epimutations that reduce DNA repair gene expression and occur early in progression to GI cancers are a likely source of this high genomic instability. Cancer cells deficient in DNA repair are more vulnerable than normal cells to inactivation by DNA damaging agents. Thus, some of the most clinically effective chemotherapeutic agents in cancer treatment are DNA damaging agents, and their effectiveness often depends on deficient DNA repair in cancer cells. Recently, at least 18 DNA repair proteins, each active in one of six DNA repair pathways, were found to be subject to epigenetic reduction of expression in GI cancers. Different DNA repair pathways repair different types of DNA damage. Evaluation of which DNA repair pathway(s) are deficient in particular types of GI cancer and/or particular patients may prove useful in guiding choice of therapeutic agents in cancer therapy. 展开更多
关键词 EPIGENETIC dna damage dna repair dna repair deficiency DISORDERS Epimutation Genomicinstability GERM-LINE mutation MicroRNAs Precancerousconditions GASTROINTESTINAL cancer
下载PDF
DNA plasticity and damage in amyotrophic lateral sclerosis 被引量:1
15
作者 Diane Penndorf Otto W.Witte Alexandra Kretz 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第2期173-180,共8页
The pathophysiology of amyotrophic lateral sclerosis (ALS) is particularly challenging due to the heteroge- neity of its clinical presentation and the diversity of cellular, molecular and genetic peculiarities invol... The pathophysiology of amyotrophic lateral sclerosis (ALS) is particularly challenging due to the heteroge- neity of its clinical presentation and the diversity of cellular, molecular and genetic peculiarities involved. Molecular insights unveiled several novel genetic factors to be inherent in both familial and sporadic dis- ease entities, whose characterizations in terms of phenotype prediction, pathophysiological impact and putative prognostic value are a topic of current researches. However, apart from genetically well-defined high-confidence and other susceptibility loci, the role of DNA damage and repair strategies of the genome as a whole, either elicited as a direct consequence of the underlying genetic mutation or seen as an autono- mous parameter, in the initiation and progression of ALS, and the different cues involved in either process are still incompletely understood. This mini review summarizes current knowledge on DNA alterations and counteracting DNA repair strategies in ALS pathology and discusses the putative role of unconventional DNA entities including transposable elements and extrachromosomal circular DNA in the disease process. Focus is set on SODl-related pathophysiology, with extension to FUS, TDP-43 and C90RF72 mutations. Advancing our knowledge in the field will contribute to an improved understanding of this relentless dis- ease, for which therapeutic options others than symptomatic approaches are almost unavailable. 展开更多
关键词 amyotrophic lateral sclerosis dna damage and repair extrachromosomal circular dna microdna nuclear pore complex SOD1 mutations TDP-43 pathology transposable elements
下载PDF
The role of exercise in brain DNA damage 被引量:1
16
作者 Thais Cereser Vilela Vanessa Moraes de Andrade +1 位作者 Zsolt Radak Ricardo Aurino de Pinho 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第11期1981-1985,共5页
Cells are constantly subjected to cytotoxic and genotoxic insults resulting in the accumulation of unrepaired damaged DNA,which leads to neuronal death.In this way,DNA damage has been implicated in the pathogenesis of... Cells are constantly subjected to cytotoxic and genotoxic insults resulting in the accumulation of unrepaired damaged DNA,which leads to neuronal death.In this way,DNA damage has been implicated in the pathogenesis of neurological disorders,cancer,and aging.Lifestyle factors,such as physical exercise,are neuroprotective and increase brain function by improving cognition,learning,and memory,in addition to regulating the cellular redox milieu.Several mechanisms are associated with the effects of exercise in the brain,such as reduced production of oxidants,up-regulation of antioxidant capacity,and a consequent decrease in nuclear DNA damage.Furthermore,physical exercise is a potential strategy for further DNA damage repair.However,the neuroplasticity molecules that respond to different aspects of physical exercise remain unknown.In this review,we discuss the influence of exercise on DNA damage and adjacent mechanisms in the brain.We discuss the results of several studies that focus on the effects of physical exercise on brain DNA damage. 展开更多
关键词 aerobic EXERCISE apoptosis BRAIN-DERIVED NEUROTROPHIC factor BRAIN dna damage dna repair NEURODEGENERATIVE disease oxidative stress physical EXERCISE strength EXERCISE
下载PDF
Genomic Instability in Cancer I: DNA-Repair Triggering Primitive Hereditary 4n-Skewed, Amitotic Division-System, the Culprit in EMT/MET/Metaplasia Cancer-Concepts 被引量:3
17
作者 Kirsten H. Walen 《Journal of Cancer Therapy》 2018年第12期974-997,共24页
The objective was to gain proof of genome damage-repair induced mitotic slippage process (MSP) to 4n-diplochromosome skewed division-system, earlier suggested to have “cancer-deciding” consequences. Our damage-model... The objective was to gain proof of genome damage-repair induced mitotic slippage process (MSP) to 4n-diplochromosome skewed division-system, earlier suggested to have “cancer-deciding” consequences. Our damage-model showed two succeeding phases: molecular mutations for initiation of fitness-gained cells, and large chromosomal changes to aneuploidy from inherited DNA-breakage-repair inaccuracies. The mutations were gained while DNA-repair and DNA-replication, co-existed in the route to tetraploidy, a phenomenon also expressed for some existing unicellular organisms. These organisms also showed genome reductive, amitotic, meioticlike division, and was the origin of human genome conserved, self-inflicted 90° reorientation of the 4n nucleus relative to the cytoskeleton axis. In the in vitro DNA-damage model, this remarkable 4n-event deciding “flat-upright” cell-growth characteristics showed several consequences, for example, cancer-important, E-cadherin-β-catenin cell-to-cell adherence destruction, which gave diploid progeny cells, mobility freedom from cell contact inhibition, likely in renewal tissues. This 4n-skewed division-system with inheritance in progeny cells for repeat occurrences as mentioned for flat-up-right growth patterns is similar to claimed concepts of metaplasia-EMT/MET embryogenesis events in cancer evolution. A scrutiny of this literature, proof-wise invalidated this embryological concept by tetraploid 8C cells occurring in MET events and, was noted for small cell occurrence, i.e., diploidy from 4n-8C reductive division, an also event for tumor relapse cells, derived from genome damaging therapy agents. Pre-cancer hyperplasia reported MSP, cadherincatenin destruction and 90° perpendicularity to basal cell membrane. The DNA-damage-repair model can weed-out therapy-agents triggering 4n-skewed division. Cancer-control, beginning-information, is likely from mutational identity of the 4n derived fitness-gained cells. 展开更多
关键词 CANCER Evolution dna-damage-repair Mitotic Slippage HEREDITARY PRIMITIVE Tetraploidy 90° Amitotic Skewed DIVISION Fitness-Gain Embryogenesis-Type EMT/MET Human Cell Conservation
下载PDF
RNF20对紫外线诱导的胃癌细胞DNA损伤修复的影响
18
作者 闫志鑫 辛海荣 +5 位作者 李娟 梁国军 张从悄 任来峰 苏文 李耀平 《胃肠病学和肝病学杂志》 CAS 2024年第4期365-371,共7页
目的探究在紫外线暴露下环指蛋白20(ring finger protein 20,RNF20)低表达对胃癌细胞DNA损伤修复的影响及其相关作用机制。方法实验采用慢病毒载体构建稳定低表达胃癌细胞系,分为对照组和RNF20敲低组,用CCK-8法检测两组细胞的增殖情况,... 目的探究在紫外线暴露下环指蛋白20(ring finger protein 20,RNF20)低表达对胃癌细胞DNA损伤修复的影响及其相关作用机制。方法实验采用慢病毒载体构建稳定低表达胃癌细胞系,分为对照组和RNF20敲低组,用CCK-8法检测两组细胞的增殖情况,用总共照射剂量为20 J/m^(2)紫外线照射胃癌MGC803细胞,采用Western blotting及免疫荧光技术检测两组细胞γ-H2AX、RAD51和p21的情况。结果荧光显微镜观察两组细胞均有绿色荧光蛋白表达;CCK-8显示RNF20表达降低会促进胃癌细胞增殖;敲低组细胞中RNF20蛋白较对照组表达降低。与对照组相比,经20 J/m^(2)紫外线照射细胞后,敲低组γ-H2AX消失更加迟缓,RAD51蛋白表达降低,p21蛋白表达下降趋势更慢。结论RNF20敲低会抑制紫外线诱导的胃癌细胞DNA损伤修复过程。 展开更多
关键词 环指蛋白20 紫外线 胃癌 dna损伤修复
下载PDF
Strategies for targeting the DNA damage response for cancer therapeutics
19
作者 Dan Zhang Hai-Bo wang +2 位作者 Kathryn L. Brinkman Su-Xia Han BO Xu 《Chinese Journal of Cancer》 SCIE CAS CSCD 2012年第8期359-363,共5页
The DNA damage response is critical for cells to maintain genome stability and survival. In this review, we discuss approaches to targeting critical elements of the DNA damage response for radiosensitization and chemo... The DNA damage response is critical for cells to maintain genome stability and survival. In this review, we discuss approaches to targeting critical elements of the DNA damage response for radiosensitization and chemosensitization. In addition, we also discuss strategies for targeting DNA damage response and DNA repair defects in cancer cells for synthetic lethality. 展开更多
关键词 dna损伤 反应 癌症治疗 肿瘤细胞 dna修复 增敏剂 基因组
下载PDF
DNA聚合酶η小分子抑制剂筛选 被引量:1
20
作者 曹佳佳 叶舒迈 赵烨 《浙江大学学报(农业与生命科学版)》 CAS CSCD 北大核心 2024年第1期35-41,共7页
DNA损伤修复以及基因组稳定性维持对于动植物正常生长和防御逆境至关重要。针对DNA聚合酶错误掺入导致的基因组不稳定性,本研究以DNA聚合酶η为研究对象,通过计算分子模拟对接的方式,对其可能的小分子抑制剂进行筛选,并对其酶动力学参... DNA损伤修复以及基因组稳定性维持对于动植物正常生长和防御逆境至关重要。针对DNA聚合酶错误掺入导致的基因组不稳定性,本研究以DNA聚合酶η为研究对象,通过计算分子模拟对接的方式,对其可能的小分子抑制剂进行筛选,并对其酶动力学参数进行测定。结果显示:脱氧腺苷三磷酸(deoxyadenosine triphosphate,d ATP)对DNA聚合酶η的活性具有抑制效果,使其延伸的相对效率为36%~42%。分子模拟对接和体外实验结果表明,相较于dATP(亲和力为-26.7 kJ/mol),环鸟苷酸-腺苷酸(cyclic GMP-AMP,cGAMP)与DNA聚合酶η具有更低的结合能(亲和力为-35.1 kJ/mol)。酶动力学参数测定结果也表明,相较于dATP,cGAMP具有更强的抑制能力且在浓度为0.5 mmol/L时达到最强(相对延伸效率为13%)。因此,本研究筛选获得了针对DNA聚合酶η的一种潜在的小分子抑制剂。同时,鉴于该蛋白质高表达导致细胞对抗肿瘤药物(DNA损伤剂)的耐受性,这为新型药物的开发提供了依据。 展开更多
关键词 dna损伤修复 dna聚合酶 酶动力学 计算生物学 环鸟苷酸-腺苷酸
下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部