期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Punicalagin prevents obesity-related cardiac dysfunction through promoting DNA demethylation in mice
1
作者 Shengjie Pei Run Liu +10 位作者 Qingqing Ma Peng Jiang Xin He Zhongshi Qi Jiacheng Fang Xu Yang Zirui Yao Xiaoqian Liu Xianfeng Jing Lei Chen Duo Li 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1465-1474,共10页
The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with stand... The aim of this study was to investigate whether punicalagin(PU)could prevent obesity-related cardiac dysfunction by promoting DNA demethy lation,and to explore its possible mechanism.C57BL/6J mice were fed with standard diet,high-fat diet(HFD),HFD supplemented with resveratrol,low-dose PU(LPU)and high-dose PU(HPU)for 8 weeks.Compared with HFD group,body weight was significantly lower in PU treatment groups,number of cardionwocytes and the protein level of myosin heavy chain 7B were significantly higher in PU treatment groups.Levels of 5-hydroxymethylcytosine and 5-formylcytosine were significantly lower in HFD group than in other groups.Compared with the HFD group,the protein level of ten-eleven translocation enzyme(TET)2 was significantly higher in PU treatment groups,p-AMP-activated protein kinase(AMPK)was significantly higher in LPU group.Levels of total antioxidant capacity and the protein levels of complexesⅡ/Ⅲ/Ⅴ,oxoglutarate dehydrogenase,succinate dehydrogenase B and fumarate hdrolase were significantly lower in HFD group than PU treatment group.The ratio of(succinic acid+fumaric acid)/a-ketoglutarate was significantly higher in HFD group than other groups.In conclusion,PU up-regulated TETs enzyme activities and TET2 protein stability through alleviating mitochondrial dysfunction and activating AMPK,so as to promote DNA demethylation,thus preventing obesity-related cardiac dysfunction. 展开更多
关键词 dna demethylation Mitochondrial function Obesity-related cardiac dysfunction PUNICALAGIN Ten-eleven translocation family enzymes
下载PDF
Dynamic changes in DNA demethylation in the tree shrew (Tupaia belangeri chinensis) brain during postnatal development and aging 被引量:3
2
作者 Shu Wei Hai-Rong Hua +5 位作者 Qian-Quan Chen Ying Zhang Fei Chen Shu-Qing Li Fan Li Jia-Li Li 《Zoological Research》 CAS CSCD 2017年第2期96-102,共7页
Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5- hydroxymethylcytosine (5hm... Brain development and aging are associated with alterations in multiple epigenetic systems, including DNA methylation and demethylation patterns. Here, we observed that the levels of the 5- hydroxymethylcytosine (5hmC) ten-eleven transtocation (TET) enzyme-mediated active DNA demethylation products were dynamically changed and involved in postnatal brain development and aging in tree shrews (Tupaia belangeri chinensis). The levels of 5hmC in multiple anatomic structures showed a gradual increase throughout postnatal development, whereas a significant decrease in 5hmC was found in several brain regions in aged tree shrews, including in the prefrontal cortex and hippocampus, but not the cerebellum. Active changes in Tet mRNA levels indicated that TET2 and TET3 predominantly contributed to the changes in 5hmC levels. Our findings provide new insight into the dynamic changes in 5hmC levels in tree shrew brains during postnatal development and aging processes. 展开更多
关键词 Tree shrew dna demethylation 5-hydroxymethylcytosine Brain development and aging
下载PDF
Association of DNA methylation/demethylation with the functional outcome of stroke in a hyperinflammatory state
3
作者 Yubo Wang Ling Zhang +6 位作者 Tianjie Lyu Lu Cui Shunying Zhao Xuechun Wang Meng Wang Yongjun Wang Zixiao Li 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2229-2239,共11页
Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effec... Inflammation is closely related to stroke prognosis, and high inflammation status leads to poor functional outcome in stroke. DNA methylation is involved in the pathogenesis and prognosis of stroke. However, the effect of DNA methylation on stroke at high levels of inflammation is unclear. In this study, we constructed a hyperinflammatory cerebral ischemia mouse model and investigated the effect of hypomethylation and hypermethylation on the functional outcome. We constructed a mouse model of transient middle cerebral artery occlusion and treated the mice with lipopolysaccharide to induce a hyperinflammatory state. To investigate the effect of DNA methylation on stroke, we used small molecule inhibitors to restrain the function of key DNA methylation and demethylation enzymes. 2,3,5-Triphenyltetrazolium chloride staining, neurological function scores, neurobehavioral tests, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot assay were used to evaluate the effects after stroke in mice. We assessed changes in the global methylation status by measuring DNA 5-mc and DNA 5-hmc levels in peripheral blood after the use of the inhibitor. In the group treated with the DNA methylation inhibitor, brain tissue 2,3,5-triphenyltetrazolium chloride staining showed an increase in infarct volume, which was accompanied by a decrease in neurological scores and worsening of neurobehavioral performance. The levels of inflammatory factors interleukin 6 and interleukin-1 beta in ischemic brain tissue and plasma were elevated, indicating increased inflammation. Related inflammatory pathway exploration showed significant overactivation of nuclear factor kappa B. These results suggested that inhibiting DNA methylation led to poor functional outcome in mice with high inflammation following stroke. Further, the effects were reversed by inhibition of DNA demethylation. Our findings suggest that DNA methylation regulates the inflammatory response in stroke and has an important role in the functional outcome of hyperinflammatory stroke. 展开更多
关键词 dna demethylation dna methylation DNMT3A functional outcome hyperinflammatory state INTERLEUKIN NEUROINFLAMMATION STROKE TET2
下载PDF
SIZ1-Mediated SUMOylation of ROS1 Enhances Its Stability and Positively Regulates Active DNA Demethylation in Arabidopsis 被引量:4
4
作者 Xiangfeng Kong Yechun Hong +4 位作者 Yi-Feng Hsu Huan Huang Xue Liu Zhe Song Jian-Kang Zhu 《Molecular Plant》 SCIE CAS CSCD 2020年第12期1816-1824,共9页
The 5-methylcytosine DNA glycosylase/lyase REPRESSOR OF SILENCING 1(ROS1)-mediated active DNA demethylation is critical for shaping the genomic DNA methylation landscape in Arabidopsis.Whether and how the stability of... The 5-methylcytosine DNA glycosylase/lyase REPRESSOR OF SILENCING 1(ROS1)-mediated active DNA demethylation is critical for shaping the genomic DNA methylation landscape in Arabidopsis.Whether and how the stability of ROS1 may be regulated by post-translational modifications is unknown.Using a methylation-sensitive PCR(CHOP-PCR)-based forward genetic screen forArabidopsis DNA hyper-methyl-ation mutants,we identified the SUMO E3 ligase SIZ1 as a critical regulator of active DNA demethylation.Dysfunction of SIZ1 leads to hyper-methylation at approximately 1000 genomic regions.SIZ1 physically in-teracts with ROS1 and mediates the SUMOylation of ROS1.The SUMOylation of ROS1 is reduced in siz1 mutant plants.Compared with that in wild-type plants,the protein level of ROS1 is significantly decreased,whereas there is an increased level of ROS1 transcripts in siz1 mutant plants.Our results suggest that SIZ1-mediated SUMOylation of ROS1 promotes its stability and positively regulates active DNA demethylation. 展开更多
关键词 SIZ1 SUMOylatoin ROS1 active dna demethylation ARABIDOPSIS
原文传递
Molecules and mechanisms controlling the active DNA demethylation of the mammalian zygotic genome 被引量:1
5
作者 Jun-Yu Ma Teng Zhang +2 位作者 Wei Shen Heide Schatten Qing Yuan Sun 《Protein & Cell》 SCIE CAS CSCD 2014年第11期827-836,共10页
The active DNA demethylation in early embryos is essential for subsequent development. Although the zygotic genome is globally demethylated, the DNA methylation of imprinted regions, part of repeat sequences and some ... The active DNA demethylation in early embryos is essential for subsequent development. Although the zygotic genome is globally demethylated, the DNA methylation of imprinted regions, part of repeat sequences and some gamete-specific regions are maintained. Recent evidence has shown that multiple proteins and biological pathways participate in the regulation of active DNA demethylation, such as TET proteins, DNA repair pathways and DNA methyltransferases. Here we review the recent understanding regarding proteins associated with active DNA demethylation and the regulatory networks controlling the active DNA demethylation in early embryos. 展开更多
关键词 active dna demethylation ZYGOTE 5-hmC5-mC preimplantation embryo TET proteins
原文传递
Transformation of 5-Carboxylcytosine to Cytosine Through C-C Bond Cleavage in Human Cells Constitutes a Novel Pathway for DNA Demethylation 被引量:1
6
作者 Yang Feng Neng-Bin Xie +8 位作者 Wan-Bing Tao Jiang-Hui Ding Xue-Jiao You Cheng-Jie Ma Xiaoxue Zhang Chengqi Yi Xiang Zhou Bi-Feng Yuan Yu-Qi Feng 《CCS Chemistry》 CAS 2021年第4期994-1008,共15页
Active demethylation of 5-methylcytosine(5mC)can be realized through ten-eleven translocation(TET)dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine(5hmC),5-formylcytosine(5fC),and 5-carboxylcytosine(5ca... Active demethylation of 5-methylcytosine(5mC)can be realized through ten-eleven translocation(TET)dioxygenase-mediated oxidation of 5mC to 5-hydroxymethylcytosine(5hmC),5-formylcytosine(5fC),and 5-carboxylcytosine(5caC),followed by thymine DNA glycosylase(TDG)-initiated base excision repair(BER).The TDG-BER pathwaymay lead to the generation of DNA strand breaks,potentially compromising genome integrity.Alternatively,direct decarboxylation of TET-produced 5caC is highly attractive because this mechanism allows for conversion of 5mC to cytosine without the formation of DNA strand breaks.However,cleavage of the C–C bond in 5caC in human cells remains an open question.We examined this reaction in cell extract and live cells using 5caC-carrying hairpin DNA substrate.After incubation with whole-cell protein extract or transfection into human cells,we monitored the transformation of 5caC to cytosine through direct decarboxylation or BER using liquid chromatography–tandem mass spectrometry(LCMS/MS)analyses at both the mononucleotide and oligodeoxynucleotide levels.Our results clearly showed the direct conversion of 5caC to cytosine in human cells,providing evidence to support a novel pathway for active DNA demethylation. 展开更多
关键词 EPIGENETICS dna demethylation 5-carboxylcytosine DECARBOXYLATION mass spectrometry stable isotope labeling
原文传递
A novel protein complex that regulates active DNA demethylation in Arabidopsis
7
作者 Pan Liu Wen-Feng Nie +11 位作者 Xiansong Xiong Yuhua Wang Yuwei Jiang Pei Huang Xueqiang Lin Guochen Qin Huan Huang Qingfeng Niu Jiamu Du Zhaobo Lang Rosa Lozano-Duran Jian-Kang Zhu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第4期772-786,共15页
Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression.The 5-methylcytosine DNA glycosylase/lyase ROS1 initiates a base-excision repair pathway for active DNA demethy... Active DNA demethylation is critical for altering DNA methylation patterns and regulating gene expression.The 5-methylcytosine DNA glycosylase/lyase ROS1 initiates a base-excision repair pathway for active DNA demethylation and is required for the prevention of DNA hypermethylation at 1000 s of genomic regions in Arabidopsis.How ROS1 is regulated and targeted to specific genomic regions is not well understood.Here,we report the discovery of an Arabidopsis protein complex that contains ROS1,regulates ROS1 gene expression,and likely targets the ROS1 protein to specific genomic regions.ROS1 physically interacts with a WD40 domain protein(RWD40),which in turn interacts with a methyl-DNA binding protein(RMB1)as well as with a zinc finger and homeobox domain protein(RHD1).RMB1 binds to DNA that is methylated in any sequence context,and this binding is necessary for its function in vivo.Loss-of-function mutations in RWD40,RMB1,or RHD1 cause DNA hypermethylation at several tested genomic regions independently of the known ROS1 regulator IDM1.Because the hypermethylated genomic regions include the DNA methylation monitoring sequence in the ROS1 promoter,plants mutated in RWD40,RMB1,or RHD1 show increased ROS1 expression.Importantly,ROS1 binding to the ROS1 promoter requires RWD40,RMB1,and RHD1,suggesting that this complex dictates ROS1 targeting to this locus.Our results demonstrate that ROS1 forms a protein complex with RWD40,RMB1,and RHD1,and that this novel complex regulates active DNA demethylation at several endogenous loci in Arabidopsis. 展开更多
关键词 dna demethylation dna methylation methyl-dna binding ROS1 WD40 domain
原文传递
DEMETHYLATION REGULATOR 1 regulates DNA demethylation of the nuclear and mitochondrial genomes
8
作者 Zhen Wang Hao Zheng +5 位作者 Jinguang Huang Guodong Yang Kang Yan Shizhong Zhang Changai Wu Chengchao Zheng 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第12期2344-2360,共17页
Active DNA demethylation effectively modulates gene expression during plant development and in response to stress.However,little is known about the upstream regulatory factors that regulate DNA demethylation.We determ... Active DNA demethylation effectively modulates gene expression during plant development and in response to stress.However,little is known about the upstream regulatory factors that regulate DNA demethylation.We determined that the demethylation regulator 1(demr1)mutant exhibits a distinct DNA methylation profile at selected loci queried by methylation-sensitive polymerase chain reaction and globally based on whole-genome bisulfite sequencing.Notably,the transcript levels of the DNA demethylase gene REPRESSOR OF SILENCING 1(ROS1)were lower in the demr1 mutant.We established that DEMR1 directly binds to the ROS1 promoter in vivo and in vitro,and the methylation level in the DNA methylation monitoring sequence of ROS1 promoter decreased by 60%in the demr1 mutant.About 40%of the hyper-differentially methylated regions(DMRs)in the demr1 mutant were shared with the ros1-4 mutant.Genetic analysis indicated that DEMR1 acts upstream of ROS1 to positively regulate abscisic acid(ABA)signaling during seed germination and seedling establishment stages.Surprisingly,the loss of DEMR1 function also caused a rise in methylation levels of the mitochondrial genome,impaired mitochondrial structure and an early flowering phenotype.Together,our results show that DEMR1 is a novel regulator of DNA demethylation of both the nuclear and mitochondrial genomes in response to ABA and plant development in Arabidopsis. 展开更多
关键词 DEMR1 dna demethylation MITOCHONDRIA plant development ROS1
原文传递
Active DNA demethylation in plants:20 years of discovery and beyond
9
作者 Heng Zhang Zhizhong Gong Jian-Kang Zhu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第12期2217-2239,共23页
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA.However,removing the methyl group from a modified cytosine is chemically difficult and therefore,the underlying mechanism of... Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA.However,removing the methyl group from a modified cytosine is chemically difficult and therefore,the underlying mechanism of demethylation had remained unclear for many years.The discovery of the first eukaryotic DNA demethylase,Arabidopsis thaliana REPRESSOR OF SILENCING 1(ROS1),led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation.In the 20 years since ROS1 was discovered,our understanding of this active DNA demethylation pathway,as well as its regulation and biological functions in plants,has greatly expanded.These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation,with potential applications in epigenome editing to facilitate crop breeding and gene therapy. 展开更多
关键词 abiotic stress response base excision repair dna demethylation dna methylation histone modification plant growth and development plant microbe interaction
原文传递
Active DNA demethylation regulates MAMP-triggered immune priming in Arabidopsis
10
作者 Mengling Huang Ying Zhang +6 位作者 Ying Wang Jiatao Xie Jiasen Cheng Yanping Fu Daohong Jiang Xiao Yu Bo Li 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2022年第8期796-809,共14页
Plants recognize microbe-associated molecular patterns(MAMPs)to activate immune responses and defense priming to defend against pathogen infections.Transcriptional regulation of gene expression is crucial for plant im... Plants recognize microbe-associated molecular patterns(MAMPs)to activate immune responses and defense priming to defend against pathogen infections.Transcriptional regulation of gene expression is crucial for plant immunity and is mediated by multiple factors,including DNA methylation.However,it remains unknown whether and how DNA demethylation contributes to immune responses in MAMPtriggered immunity.Here,we report that active DNA demethylation is required for MAMP-triggered immunity to bacterial pathogens.The rdd-2 triple mutant carrying mutations in ROS1,DML2,and DML3 that encode DNA glycosylases,which are key DNA demethylation enzymes,exhibits compromised immune responses triggered by the MAMPs fig22 and elf18.Genome-wide methylome analysis reveals that fig22 induces rapid and specific DNA demethylation in an RDD-dependent manner.The expression levels of salicylic acid signaling-related and phytoalexin biosynthesis-related genes are tightly associated with the fig22-induced promoter demethylation.The compromised accumulation of priming compounds and antimicrobial metabolites ultimately leads to a defense priming defect in the rdd-2 mutant.Our results reveal the critical role of active DNA demethylation in the MAMP-triggered immune response and provide unique insight into the molecular mechanism of fig22-modulated DNA demethylation. 展开更多
关键词 Pattern-triggered immunity Immune priming Defense gene expression dna demethylation Immune signal transduction
原文传递
DNA methylation and demethylation link the properties of mesenchymal stem cells: Regeneration and immunomodulation 被引量:3
11
作者 Tian-Yi Xin Ting-Ting Yu Rui-Li Yang 《World Journal of Stem Cells》 SCIE CAS 2020年第5期351-358,共8页
Mesenchymal stem cells(MSCs)are a heterogeneous population that can be isolated from various tissues,including bone marrow,adipose tissue,umbilical cord blood,and craniofacial tissue.MSCs have attracted increasingly m... Mesenchymal stem cells(MSCs)are a heterogeneous population that can be isolated from various tissues,including bone marrow,adipose tissue,umbilical cord blood,and craniofacial tissue.MSCs have attracted increasingly more attention over the years due to their regenerative capacity and function in immunomodulation.The foundation of tissue regeneration is the potential of cells to differentiate into multiple cell lineages and give rise to multiple tissue types.In addition,the immunoregulatory function of MSCs has provided insights into therapeutic treatments for immune-mediated diseases.DNA methylation and demethylation are important epigenetic mechanisms that have been shown to modulate embryonic stem cell maintenance,proliferation,differentiation and apoptosis by activating or suppressing a number of genes.In most studies,DNA hypermethylation is associated with gene suppression,while hypomethylation or demethylation is associated with gene activation.The dynamic balance of DNA methylation and demethylation is required for normal mammalian development and inhibits the onset of abnormal phenotypes.However,the exact role of DNA methylation and demethylation in MSC-based tissue regeneration and immunomodulation requires further investigation.In this review,we discuss how DNA methylation and demethylation function in multi-lineage cell differentiation and immunomodulation of MSCs based on previously published work.Furthermore,we discuss the implications of the role of DNA methylation and demethylation in MSCs for the treatment of metabolic or immune-related diseases. 展开更多
关键词 Mesenchymal stem cells dna methylation and demethylation Multi-lineage differentiation REGENERATION IMMUNOMODULATION Immune disease
下载PDF
AlCl3 exposure regulates neuronal development by modulating DNA modification 被引量:1
12
作者 Xue-Jun Cheng Fu-Lai Guan +3 位作者 Qian Li Gong Dai Hai-Feng Li Xue-Kun Li 《World Journal of Stem Cells》 SCIE 2020年第11期1354-1365,共12页
BACKGROUND As the third most abundant element,aluminum is widespread in the environment.Previous studies have shown that aluminum has a neurotoxic effect and its exposure can impair neuronal development and cognitive ... BACKGROUND As the third most abundant element,aluminum is widespread in the environment.Previous studies have shown that aluminum has a neurotoxic effect and its exposure can impair neuronal development and cognitive function.AIM To study the effects of aluminum on epigenetic modification in neural stem cells and neurons.METHODS Neural stem cells were isolated from the forebrain of adult mice.Neurons were isolated from the hippocampi tissues of embryonic day 16-18 mice.AlCl3 at 100 and 200μmol/L was applied to stem cells and neurons.RESULTS Aluminum altered the differentiation of adult neural stem cells and caused apoptosis of newborn neurons while having no significant effects on the proliferation of neural stem cells.Aluminum application also significantly inhibited the dendritic development of hippocampal neurons.Mechanistically,aluminum exposure significantly affected the levels of DNA 5-hydroxy methylcytosine,5-methylcytosine,and N6-methyladenine in stem cells and neurons.CONCLUSION Our findings indicate that aluminum may regulate neuronal development by modulating DNA modifications. 展开更多
关键词 ALUMINUM dna demethylation 5-hydroxymethylcytosine Neural stem cells NEURON Neuronal development
下载PDF
Expression of the C-Terminal Domain of Mammalian TET3 DNA Dioxygenase in Arabidopsis thaliana Induces Heritable Methylation Changes at rDNA Loci
13
作者 Elizabeth Hollwey Michael Watson Peter Meyer 《Advances in Bioscience and Biotechnology》 2016年第5期243-250,共8页
In plants, demethylation of 5-methylcytosine (5 mC) residues is controlled by DNA glycosylases, while in mammals it requires oxidation of 5 mC by TET proteins, a group of Fe(II)/2-oxoglutaratedependent dioxygenases. W... In plants, demethylation of 5-methylcytosine (5 mC) residues is controlled by DNA glycosylases, while in mammals it requires oxidation of 5 mC by TET proteins, a group of Fe(II)/2-oxoglutaratedependent dioxygenases. We analysed the effects of expressing the C-terminal catalytic domain of the human TET3 gene (TET3c) in Arabidopsis thaliana, using an rDNA region as a methylation reporter. In TET3c transformants, epialleles with hypomethylation or hypermethylation patterns can be induced, which is each stably retained in progeny lines even after removal of the TET3c transgene. In TET3c transformants, 5-hydroxymethylcytosine (5 hmC) marks are detected, indicative of the oxidative activity of the transgenic enzyme. 5-formylcytosine (5 fC) is only detectable in TET3c transformants with a DNA glycosylase mutant background suggesting further oxidation of 5 hmC residues to 5 fC by TET3c, and efficient recognition and removal of 5 fC by plant glycosylases. The results suggest that TET3c can be employed to induce heritable locus-specific changes in DNA methylation, and that accumulation of 5 hmC can be used as a marker for TET3c target regions. 展开更多
关键词 Arabidopsis thaliana dna Methylation dna demethylation Ten-Eleven-Translocation (TET) Proteins DIOXYGENASE 5-Hydroxy-Methylcytosine (5 hmC) 5-Formyl-Cytosine 1.
下载PDF
Remarkably different results between two studies from North America on genomic mutations and sensitivity to DNA demethylating agents for myelodysplastic syndromes
14
作者 Guiping Wang Shanshan Guo +5 位作者 Huashi Xiao Liang Zong Tetsuya Asakawa Masanobu Abe Wenqing Hu Jiafu Ji 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2017年第6期587-588,共2页
Sekeres et al. (1) conducted a multicenter randomized, controlled trial to compare whether azacitidine-based combinations with lenalidomide or vorinostat produce superior overall response rates to azacitidine in the... Sekeres et al. (1) conducted a multicenter randomized, controlled trial to compare whether azacitidine-based combinations with lenalidomide or vorinostat produce superior overall response rates to azacitidine in the treatment of myelodysplastic syndromes (MDS). In that trial, 224 patients with higher-risk MDS and 53 with chronic myelomonocytic leukemia (CMML) were enrolled and randomly assigned to the "azacitidine" group, "azacitidine plus lenalidomide" group or "azacitidine plus vorinostat" group. The researchers found that patients with MDS treated with azacitidine-based combinations had similar response rate to azacitidine monotherapy. Using genomic mutation analysis, they found that the overall response rate to azacitidine-based treatment was higher for patients with mutations in DNMT3A and lower for those with mutations in SRSF2. Whereas in another study, Welch et al. enrolled 26 patients with MDS and 90 with acute myeloid leukemia (AML) who were treated with decitabine, and they found that patients with TP53 mutations had a higher response rate, but not those with DNMT3A mutations (2). We propose that this big discrepancy in the conclusions between the two studies might have been caused by the presence of many co-interacting factors, e.g. study aims, DNA demethylating agents, treatment protocols, and patient sources. 展开更多
关键词 MDS dna Remarkably different results between two studies from North America on genomic mutations and sensitivity to dna demethylating agents for myelodysplastic syndromes
下载PDF
TET1 knockdown inhibits the odontogenic differentiation potential of human dental pulp cells 被引量:8
15
作者 Li-Jia Rao Bai-Cheng Yi +1 位作者 Qi-Meng Li Qiong Xu 《International Journal of Oral Science》 SCIE CAS CSCD 2016年第2期110-116,共7页
Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells and generate reparative dentin in response to exogenous stimuli or injury. Ten-eleven translocation 1 (TET1) is a n... Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells and generate reparative dentin in response to exogenous stimuli or injury. Ten-eleven translocation 1 (TET1) is a novel DNA methyldioxygenase that plays an important role in the promotion of DNA demethylation and transcriptional regulation in several cell lines. However, the role of TET1 in the biological functions of hDPCs is unknown. To investigate the effect of TET1 on the proliferation and odontogenic differentiation potential of hDPCs, a recombinant shRNA lentiviral vector was used to knock down TET1 expression in hDPCs. Following TET1 knockdown, TET1 was significantly downregulated at both the mRNA and protein levels. Proliferation of the hDPCs was suppressed in the TET1 knockdown groups. Alkaline phosphatase activity, the formation of mineralized nodules, and the expression levels of DSPP and DMP1 were all reduced in the TETl-knockdown hDPCs undergoing odontogenic differentiation. Based on these results, we concluded that TET1 knockdown can prevent the proliferation and odontogenic differentiation of hDPCs, which suggests that TET1 may play an important role in dental pulp repair and regeneration. 展开更多
关键词 dna demethylation human dental pulp cell KNOCKDOWN odontogenic differentiation ten-eleven translocation 1
下载PDF
A photo-elutable and template-free isothermal amplification strategy for sensitive fluorescence detection of 5-formylcytosine in genomic DNA
16
作者 Hongling Yang Yanfei Zhang +4 位作者 Zhenning Yu Si-Yang Liu Yuzhi Xu Zong Dai Xiaoyong Zou 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第3期166-170,共5页
5-Formylcytosine(5fC), as an important epigenetic modification, plays a vital role in diverse biological processes and multiple diseases by regulating gene expression. Owing to the extremely low abundance of 5fC in al... 5-Formylcytosine(5fC), as an important epigenetic modification, plays a vital role in diverse biological processes and multiple diseases by regulating gene expression. Owing to the extremely low abundance of 5fC in all mammalian tissues and high structural similarity with other cytosine derivatives, the precise and sensitive detection of 5fC is challenging. Herein, a photo-elutable and template-free isothermal amplification strategy has been proposed for the sensitive detection of 5fC in genomic DNA based on5fC-specific biotinylation, enrichment, photocleavage, and terminal deoxynucleotidyl transferase(Td T)-assisted fluorescence signal amplification, which is termed 5fC-PTIAS. By introducing the highly specific chemolabeling and the one-step photoelution processes, this strategy possesses a minimal nonspecific background as well as a much higher amplification efficiency. With the high signal-to-noise ratio, this strategy can achieve the accurate quantification of 5fC in various biological samples including mouse brain, kidney, and liver, with a limit of detection(LOD) of 0.025‰ in DNA(S/N=3). These results not only confirm the widespread distribution of 5fC but also indicate its significant variation in different tissues and ages. The bisulfite-and mass spectrometry-free strategy is highly sensitive, selective, and easily mastered, holding great promise in detecting other epigenetic modifications with much lower levels. 展开更多
关键词 5-Formylcytosine dna demethylation Fluorescence detection Isothermal amplification Magnetic separation
原文传递
Global Analysis of Cytosine Methylation and Proteome Under Cold Treatment in Brassica napus 被引量:2
17
作者 WEI Fang HU Jie +3 位作者 CUI Ming-zhu ZHANG Yan-hui LI Yun-ling TIAN Bao-ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第10期2170-2176,共7页
Cytosine methylation/demethylation plays pivotal roles in regulating gene expression at a genome-wide level. However, limited reports are available to reveal correlating changes of cytosine methylation and proteomic e... Cytosine methylation/demethylation plays pivotal roles in regulating gene expression at a genome-wide level. However, limited reports are available to reveal correlating changes of cytosine methylation and proteomic expression in Brassica napus so far. Therefore, in the present study, global cytosine methylation and proteome were analysed in B. napus after cold treatment by methylation-sensitive amplified polymorphism (MSAP) and two-dimensional protein electrophoresis technology (2-DE). The results showed that the lowered genome-wide DNA methylation status was revealed after cold treatment, and about 0.88% of discrepancy in DNA methylation was detected between the non-flowering and flowering plants after cold treatment. Moreover, the 52 significantly up-regulated proteins emerged in comparison with the 36 down-regulated proteins, as well as the 14 proteins exclusively detected in the flowering plants. Intriguingly the 8 specifically expressed proteins in the non-flowering plants disappeared in the flowering plants with cold treatment. Therefore, these present data proved that the correlating changes of cytosine methylation and proteomic expression were evidenced under cold treatment in B. napus. 展开更多
关键词 dna methylation/demethylation MSAP 2-DE cold treatment Brassica napus
下载PDF
DNA methylation program during development 被引量:2
18
作者 Feng C. ZHOU 《Frontiers in Biology》 CAS CSCD 2012年第6期485-494,共10页
DNA methylation is a key epigenetic mark when occurring in the promoter and enhancer regions regulates the accessibility of the binding protein and gene transcription. DNA methylation is inheritable and can be de novo... DNA methylation is a key epigenetic mark when occurring in the promoter and enhancer regions regulates the accessibility of the binding protein and gene transcription. DNA methylation is inheritable and can be de novosynthesized, erased and reinstated, making it arguably one of the most dynamic upstream regulators for gene expression and the most influential pacer for development. Recent progress has demonstrated that two forms of cytosine methylation and two pathways for demethylation orchestrated gene expression and development. The such a program, if so what the DNA methylation methylation program. The translational implication constitute ample complexity for an instructional program for forum of the current discussion and review are whether there is program entails, and what environment can change the DNA of the DNA methylation program is also proposed. 展开更多
关键词 EPIGENETICS neural development 5-hydroxymethylcytosine EPIGENOME environmental factors dna demethylation
原文传递
Roles of DEMETER in regulating DNA methylation in vegetative tissues and pathogen resistance 被引量:1
19
作者 Wenjie Zeng Huan Huang +7 位作者 Xueqiang Lin Chen Zhu Ken-ichi Kosami Chaofeng Huang Huiming Zhang Cheng-Guo Duan Jian-Kang Zhu Daisuke Miki 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2021年第4期691-706,共16页
DNA methylation is an epigenetic mark important for genome stability and gene expression.In Arabidopsis thaliana,the 5-methylcytosine DNA glycosylase/demethylase DEMETER(DME)controls active DNA demethylation during th... DNA methylation is an epigenetic mark important for genome stability and gene expression.In Arabidopsis thaliana,the 5-methylcytosine DNA glycosylase/demethylase DEMETER(DME)controls active DNA demethylation during the reproductive stage;however,the lethality of loss-of-function dme mutations has made it difficult to assess DME function in vegetative tissues.Here,we edited DME using clustered regularly interspaced short palindromic repeats(CRISPR)/CRISPR-associated protein 9 and created three weak dme mutants that produced a few viable seeds.We also performed central cell-specific complementation in a strong dme mutant and combined this line with mutations in the other three Arabidopsis demethylase genes to generate the dme ros1 dml2 dml3(drdd)quadruple mutant.A DNA methylome analysis showed that DME is required for DNA demethylation at hundreds of genomic regions in vegetative tissues.A transcriptome analysis of the drdd mutant revealed that DME and the other three demethylases are important for plant responses to biotic and abiotic stresses in vegetative tissues.Despite the limited role of DME in regulating DNA methylation in vegetative tissues,the dme mutants showed increased susceptibility to bacterial and fungal pathogens.Our study highlights the important functions of DME in vegetative tissues and provides valuable genetic tools for future investigations of DNA demethylation in plants. 展开更多
关键词 active dna demethylation Arabidopsis disease resistance DME dna methylation
原文传递
The H3K9me2-binding protein AGDP3 limits DNA methylation and transcriptional gene silencing in Arabidopsis 被引量:1
20
作者 Xuelin Zhou Mengwei Wei +16 位作者 Wenfeng Nie Yue Xi Li Peng Qijie Zheng Kai Tang Viswanathan Satheesh Yuhua Wang Jinyan Luo Xuan Du Rui Liu Zhenlin Yang Honggui La Yingli Zhong Yu Yang Jian-Kang Zhu Jiamu Du Mingguang Lei 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第12期2385-2395,共11页
DNA methylation,a conserved epigenetic mark,is critical for tuning temporal and spatial gene expression.The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1(ROS1)initiates active DNA demethylation a... DNA methylation,a conserved epigenetic mark,is critical for tuning temporal and spatial gene expression.The Arabidopsis thaliana DNA glycosylase/lyase REPRESSOR OF SILENCING 1(ROS1)initiates active DNA demethylation and is required to prevent DNA hypermethylation at thousands of genomic loci.However,how ROS1 is recruited to specific loci is not well understood.Here,we report the discovery of Arabidopsis AGENET Domain Containing Protein 3(AGDP3)as a cellular factor that is required to prevent gene silencing and DNA hypermethylation.AGDP3 binds to H3K9me2 marks in its target DNA via its AGD12 cassette.Analysis of the crystal structure of the AGD12 cassette of AGDP3 in complex with an H3K9me2 peptide revealed that dimethylated H3 K9 and unmodified H3 K4 are specifically anchored into two different surface pockets.A histidine residue located in the methyllysine binding aromatic cage provides AGDP3 with pH-dependent H3K9me2 binding capacity.Our results uncover a molecular mechanism for the regulation of DNA demethylation by the gene silencing mark H3K9me2. 展开更多
关键词 AGDP3 dna demethylation EPIGENETICS H3K9me2 ROS1
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部