BACKGROUND: 10-23 DNA enzyme is one kind of de-oxyribozymes for RNA cleavage. The inhibition effects of 10-23 DNA enzyme on the expression of the HBV C gene in HepG2. 2. 15 cells were demonstrated previously. The aim ...BACKGROUND: 10-23 DNA enzyme is one kind of de-oxyribozymes for RNA cleavage. The inhibition effects of 10-23 DNA enzyme on the expression of the HBV C gene in HepG2. 2. 15 cells were demonstrated previously. The aim of this study was to further explore the cleavage activities of 10-23 DNA enzyme targeting at HBV C gene mRNA in vitro. METHODS: 10-23 DNA enzyme named Drz-HBV-C-9 specific to HBV C gene ORF A1816UG was designed and synthesized. HBV C gene mRNA was obtained by the in vitro transcription method. Cleavage activities of Drz-HBV-C-9 were observed in vitro. Values of kinetic parameters including Km,Kcat and Kcat/Km were calculated accordingly. RESULTS: Under the certain cleavage conditions, Drz-HBV-C-9 could efficiently cleave target mRNA at specific sites in vitro. Cleavage products of 109nt plus 191nt were obtained. The kinetic parameters, Km,Kcat and Kcat/ Km for Drz-HBV-C-9, were 1.4 ×10-9 mol, 1.6 min-1 and 1.1 × 109 mol-1 · min-1, respectively. CONCLUSIONS: 10-23 DNA enzyme targeting at HBV C gene mRNA possesses specific cleavage activities in vitro. This would be a potent antiviral strategy with respect to HBV gene therapy.展开更多
In accordance with previous reports, the sequences related to phosporylated protein segments occur in conserved variable domains of immunoglobulins including first of all certain N-terminally located segments. Consequ...In accordance with previous reports, the sequences related to phosporylated protein segments occur in conserved variable domains of immunoglobulins including first of all certain N-terminally located segments. Consequently, we look here for the sequences 1) composing human and mouse proteins different from antigen receptors, 2) identical with or highly similar to nucleotide sequence representatives of conserved variable immunoglobulin segments and 3) identical with or closely related to phosphorylation sites. More precisely, we searched for the corresponding actual pairs of DNA and protein sequence segments using five-step bilingual approach employing among others a) different types of BLAST searches, b) two in-principle-different machine-learning methods predicting phosphorylated sites and c) two large databases recording existing phosphorylation sites. The approach identified seven existing phosphorylation sites and thirty-seven related human and mouse segments achieving limits for several predictions or phylogenic parameters. Mostly serines phosporylated with ataxia-telangiectasia-related kinase (involved in regulation of DNA-double-strand-break repair) were indicated or predicted in this study. Hypermutation motifs, located in effective positions of the selected sequence segments, occurred significantly less frequently in transcribed than non-transcribed DNA strands suggesting thus the incidence of mutation events. In addition, marked differences between the numbers and proportions of human and mouse cancer-related sequence items were found in different steps of selection process. The possible role of hypermutation changes within the selected segments and the observed structural relationships are discussed here with respect to DNA damage, carcinogenesis, cancer vaccination, ageing and evolution. Taken together, our data represent additional and sometimes perhaps complementary information to the existing databases of empirically proven phosphorylation sites or pathogenically important spots.展开更多
Klebsiella pneumoniae ( K. pneumoniae) is one of the main gmn-negative bacilli in clinical practice. Nosocomial infections caused by K. pneumoniae producing extended-spectrum β-lactamases (ESBLs) are very difficu...Klebsiella pneumoniae ( K. pneumoniae) is one of the main gmn-negative bacilli in clinical practice. Nosocomial infections caused by K. pneumoniae producing extended-spectrum β-lactamases (ESBLs) are very difficult to treat. This paper investigated the resistant characteristics of K. pneumoniae producing ESBLs and their aminoglycoside-modifying enzyme gene expressions including Nacetyltransferases and O-adenyltransferases. Bacteria identification and ESBLs confirmatory tests were performed by Phoenix^TM-100 system. And minimum inhibitory concentrations (MICs) of gentamicin, amikacin, kanamycin, tobranycin, netilmicin and neomycin in 53 K. pneumoniae isolates were detected by agar dilution. In addition, six aminoglycoside-modifying enzyme genes were amplified by polymerase chain reaction (PCR) and verified by DNA sequencer. It was found that imipenem and meropenem against 120 K. pneumoniae isolates produced powerful antimicrobial activities. The resistant rates of gentamicin and amikacin were 55.0% and 46.7%, respectively. Except neomycin, MIC50 and MIC90 of gentamicin, amikacin, kanamycin, tobramycin and netilmicin in 53 K. pneumoniae were all 〉 128 μg/ml, and the resistant rates were 83.0%, 52.3%, 75.5%, 81.1% and 69.8%, respectively. However, neomycin was only 39.6%. In addition, five modifying enzyme genes, including aac(3)-Ⅰ, aac(3)-Ⅱ, aac(6')-Ⅰb, ant(3")-Ⅰ, ant(2")-Ⅰ genes, were found in 53 isoaltes except aac (6')-Ⅱ, and their positive rates were 11.3%, 67.9%, 47.2%, 1.9% and 39.6%, respectively. It was also confirmed by nucleotide sequence analysis that the above resistant genes shared nearly 100% identities with GenBank published genes. The results obtained in the present study indicated that K. pneumoniae producing ESBLs strains are rapidly spreading in our hospital, and their resistance to aminoglycosides may be associated with aminoglycoside-modifying enzyme gene expressions.展开更多
Objective To study the relation between point mutations at nt3243 and nt8344 of muscle mitochondrial DNA from patients with mitochondrial encephalomyopathies and phenotypes. Methods DNA was extracted from muscle speci...Objective To study the relation between point mutations at nt3243 and nt8344 of muscle mitochondrial DNA from patients with mitochondrial encephalomyopathies and phenotypes. Methods DNA was extracted from muscle specimens from 5 patients with mitochondrial encephalomyopathies and amplified by PCR method, using corresponding oligonucleotide primers. DNA fragments were digested with restriction enzymes BglⅠ and ApaⅠ, then the digested DNA fragments were analyzed with an electrophoresis method.Results The point mutation at nt3243 of mtDNA was found in 2 patients, one with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) and another with myoclonic epilepsy with ragged red fibers (MERRF). The point mutation at nt8344 was found in 2 patients with MERRF, including the one with point mutation at nt3243.Conclusion The point mutation of DNA at nt3243 correlated with MELAS and nt8344 correlated with MERRF. In addition, the detection of point mutations at both nt3243 and nt8344 in a patient with MERRF shows the association of mutation with diversity in clinical manifestations of mitochondrial encephalomyopathies.展开更多
基金This study was supported by a grant from the National Natural Science Foundation of China (No. 30271183).
文摘BACKGROUND: 10-23 DNA enzyme is one kind of de-oxyribozymes for RNA cleavage. The inhibition effects of 10-23 DNA enzyme on the expression of the HBV C gene in HepG2. 2. 15 cells were demonstrated previously. The aim of this study was to further explore the cleavage activities of 10-23 DNA enzyme targeting at HBV C gene mRNA in vitro. METHODS: 10-23 DNA enzyme named Drz-HBV-C-9 specific to HBV C gene ORF A1816UG was designed and synthesized. HBV C gene mRNA was obtained by the in vitro transcription method. Cleavage activities of Drz-HBV-C-9 were observed in vitro. Values of kinetic parameters including Km,Kcat and Kcat/Km were calculated accordingly. RESULTS: Under the certain cleavage conditions, Drz-HBV-C-9 could efficiently cleave target mRNA at specific sites in vitro. Cleavage products of 109nt plus 191nt were obtained. The kinetic parameters, Km,Kcat and Kcat/ Km for Drz-HBV-C-9, were 1.4 ×10-9 mol, 1.6 min-1 and 1.1 × 109 mol-1 · min-1, respectively. CONCLUSIONS: 10-23 DNA enzyme targeting at HBV C gene mRNA possesses specific cleavage activities in vitro. This would be a potent antiviral strategy with respect to HBV gene therapy.
文摘In accordance with previous reports, the sequences related to phosporylated protein segments occur in conserved variable domains of immunoglobulins including first of all certain N-terminally located segments. Consequently, we look here for the sequences 1) composing human and mouse proteins different from antigen receptors, 2) identical with or highly similar to nucleotide sequence representatives of conserved variable immunoglobulin segments and 3) identical with or closely related to phosphorylation sites. More precisely, we searched for the corresponding actual pairs of DNA and protein sequence segments using five-step bilingual approach employing among others a) different types of BLAST searches, b) two in-principle-different machine-learning methods predicting phosphorylated sites and c) two large databases recording existing phosphorylation sites. The approach identified seven existing phosphorylation sites and thirty-seven related human and mouse segments achieving limits for several predictions or phylogenic parameters. Mostly serines phosporylated with ataxia-telangiectasia-related kinase (involved in regulation of DNA-double-strand-break repair) were indicated or predicted in this study. Hypermutation motifs, located in effective positions of the selected sequence segments, occurred significantly less frequently in transcribed than non-transcribed DNA strands suggesting thus the incidence of mutation events. In addition, marked differences between the numbers and proportions of human and mouse cancer-related sequence items were found in different steps of selection process. The possible role of hypermutation changes within the selected segments and the observed structural relationships are discussed here with respect to DNA damage, carcinogenesis, cancer vaccination, ageing and evolution. Taken together, our data represent additional and sometimes perhaps complementary information to the existing databases of empirically proven phosphorylation sites or pathogenically important spots.
文摘Klebsiella pneumoniae ( K. pneumoniae) is one of the main gmn-negative bacilli in clinical practice. Nosocomial infections caused by K. pneumoniae producing extended-spectrum β-lactamases (ESBLs) are very difficult to treat. This paper investigated the resistant characteristics of K. pneumoniae producing ESBLs and their aminoglycoside-modifying enzyme gene expressions including Nacetyltransferases and O-adenyltransferases. Bacteria identification and ESBLs confirmatory tests were performed by Phoenix^TM-100 system. And minimum inhibitory concentrations (MICs) of gentamicin, amikacin, kanamycin, tobranycin, netilmicin and neomycin in 53 K. pneumoniae isolates were detected by agar dilution. In addition, six aminoglycoside-modifying enzyme genes were amplified by polymerase chain reaction (PCR) and verified by DNA sequencer. It was found that imipenem and meropenem against 120 K. pneumoniae isolates produced powerful antimicrobial activities. The resistant rates of gentamicin and amikacin were 55.0% and 46.7%, respectively. Except neomycin, MIC50 and MIC90 of gentamicin, amikacin, kanamycin, tobramycin and netilmicin in 53 K. pneumoniae were all 〉 128 μg/ml, and the resistant rates were 83.0%, 52.3%, 75.5%, 81.1% and 69.8%, respectively. However, neomycin was only 39.6%. In addition, five modifying enzyme genes, including aac(3)-Ⅰ, aac(3)-Ⅱ, aac(6')-Ⅰb, ant(3")-Ⅰ, ant(2")-Ⅰ genes, were found in 53 isoaltes except aac (6')-Ⅱ, and their positive rates were 11.3%, 67.9%, 47.2%, 1.9% and 39.6%, respectively. It was also confirmed by nucleotide sequence analysis that the above resistant genes shared nearly 100% identities with GenBank published genes. The results obtained in the present study indicated that K. pneumoniae producing ESBLs strains are rapidly spreading in our hospital, and their resistance to aminoglycosides may be associated with aminoglycoside-modifying enzyme gene expressions.
文摘Objective To study the relation between point mutations at nt3243 and nt8344 of muscle mitochondrial DNA from patients with mitochondrial encephalomyopathies and phenotypes. Methods DNA was extracted from muscle specimens from 5 patients with mitochondrial encephalomyopathies and amplified by PCR method, using corresponding oligonucleotide primers. DNA fragments were digested with restriction enzymes BglⅠ and ApaⅠ, then the digested DNA fragments were analyzed with an electrophoresis method.Results The point mutation at nt3243 of mtDNA was found in 2 patients, one with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) and another with myoclonic epilepsy with ragged red fibers (MERRF). The point mutation at nt8344 was found in 2 patients with MERRF, including the one with point mutation at nt3243.Conclusion The point mutation of DNA at nt3243 correlated with MELAS and nt8344 correlated with MERRF. In addition, the detection of point mutations at both nt3243 and nt8344 in a patient with MERRF shows the association of mutation with diversity in clinical manifestations of mitochondrial encephalomyopathies.