期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
DNA Tandem Repeats as Iterable Objects to Count Cell Divisions: A Computational Model
1
作者 Marco Franco Giulio Regolini 《Advances in Bioscience and Biotechnology》 CAS 2024年第4期207-234,共28页
Cell lineages of nematodes are completely known: the adult male of Caenorhabditis elegans contains 1031 somatic cells, the hermaphrodite 959, not one more, not one less;cell divisions are strictly deterministic (as in... Cell lineages of nematodes are completely known: the adult male of Caenorhabditis elegans contains 1031 somatic cells, the hermaphrodite 959, not one more, not one less;cell divisions are strictly deterministic (as in the great majority of invertebrates) but so far nothing is known about the mechanism used by cells to count precise numbers of divisions. In vertebrates, each species has its invariable deterministic numbers of somites, vertebrae, fingers, and teeth: counting the number of iterations is a widespread process in living beings;nonetheless, it remains an unanswered question and a great challenge in cell biology. This paper introduces a computational model to investigate the possible role of satellite DNA in counting cell divisions, showing how cells may operate under Boolean logic algebra. Satellite DNA, made up of repeated monomers and subject to high epigenetic methylation rates, is very similar to iterable sequences used in programming: just like in the “iteration protocol” of algorithms, the epigenetic machinery may run over linear tandem repeats (that hold cell-fate data), read and orderly mark one monomer per cell-cycle (cytosine methylation), keep track and transmit marks to descendant cells, sending information to cell-cycle regulators. 展开更多
关键词 satellite dna Tandem-Repeats EPIGENETICS
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部