期刊文献+
共找到3,787篇文章
< 1 2 190 >
每页显示 20 50 100
The DNA damage repair complex MoMMS21-MoSMC5 is required for infection-related development and pathogenicity of Magnaporthe oryzae
1
作者 Yue Jiang Rong Wang +8 位作者 Lili Du Xueyu Wang Xi Zhang Pengfei Qi Qianfei Wu Baoyi Peng Zonghua Wang Mo Wang Ya Li 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期1956-1966,共11页
The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic ... The conserved DNA damage repair complex,MMS21-SMC5/6(Methyl methane sulfonate 21-Structural maintenance of chromosomes 5/6),has been extensively studied in yeast,animals,and plants.However,its role in phytopathogenic fungi,particularly in the highly destructive rice blast fungus Magnaporthe oryzae,remains unknown.In this study,we functionally characterized the homologues of this complex,MoMMS21 and MoSMC5,in M.oryzae.We first demonstrated the importance of DNA damage repair in M.oryzae by showing that the DNA damage inducer phleomycin inhibited vegetative growth,infection-related development and pathogenicity in this fungus.Additionally,we discovered that MoMMS21 and MoSMC5 interacted in the nuclei,suggesting that they also function as a complex in M.oryzae.Gene deletion experiments revealed that both MoMMS21 and MoSMC5 are required for infection-related development and pathogenicity in M.oryzae,while only MoMMS21 deletion affected growth and sensitivity to phleomycin,indicating its specific involvement in DNA damage repair.Overall,our results provide insights into the roles of MoMMS21 and MoSMC5 in M.oryzae,highlighting their functions beyond DNA damage repair. 展开更多
关键词 Magnaporthe oryzae MMS21 SMC5 dna damage repair PATHOGENICITY
下载PDF
LncRNA HOTAIR promotes DNA damage repair and radioresistance by targeting ATR in colorectal cancer
2
作者 HAIQING HU HAO YANG +3 位作者 SHUAISHUAI FAN XUE JIA YING ZHAO HONGRUI LI 《Oncology Research》 SCIE 2024年第8期1335-1346,共12页
Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal c... Long non-coding RNAs(lncRNAs)have been implicated in cancer progression and drug resistance development.Moreover,there is evidence that lncRNA HOX transcript antisense intergenic RNA(HOTAIR)is involved in colorectal cancer(CRC)progression.The present study aimed to examine the functional role of lncRNA HOTAIR in conferring radiotherapy resistance in CRC cells,as well as the underlying mechanism.The relative expression levels of HOTAIR were examined in 70 pairs of CRC tumor and para-cancerous tissues,as well as in radiosensitive and radioresistant samples.The correlations between HOTAIR expression levels and clinical features of patients with CRC were assessed using the Chi-square test.Functional assays such as cell proliferation,colony formation and apoptosis assays were conducted to determine the radiosensitivity in CRC cells with HOTAIR silencing after treatment with different doses of radiation.RNA pull-down assay andfluorescence in situ hybridization(FISH)were used to determine the interaction between HOTAIR and DNA damage response mediator ataxia-telangiectasia mutated-and Rad3-related(ATR).HOTAIR was significantly upregulated in CRC tumor tissues,especially in radioresistant tumor samples.The elevated expression of HOTAIR was correlated with more advanced histological grades,distance metastasis and the poor prognosis in patients with CRC.Silencing HOTAIR suppressed the proliferation and promoted apoptosis and radiosensitivity in CRC cells.HOTAIR knockdown also inhibited the tumorigenesis of CRC cells and enhanced the sensitivity to radiotherapy in a mouse xenograft model.Moreover,the data showed that HOTAIR could interact with ATR to regulate the DNA damage repair signaling pathway.Silencing HOTAIR impaired the ATR-ATR interacting protein(ATRIP)complex and signaling in cell cycle progression.Collectively,the present results indicate that lncRNA HOTAIR facilitates the DNA damage response pathway and promotes radioresistance in CRC cells by targeting ATR. 展开更多
关键词 LncRNA HOTAIR CRC RADIORESISTANCE dna damage repair ATR
下载PDF
Anti-inflammatory and DNA Repair Effects of Astragaloside IV on PC12 Cells Damaged by Lipopolysaccharide
3
作者 Hai-long LI Li-hua SHAO +6 位作者 Xi CHEN Meng WANG Qi-jie QIN Ya-li YANG Guang-run ZHANG Yang HAI Yi-hong TIAN 《Current Medical Science》 SCIE CAS 2024年第4期854-863,共10页
Objective This study aimed to establish a neural cell injury model in vitro by stimulating PC12 cells with lipopolysaccharide(LPS)and to examine the effects of astragaloside IV on key targets using high-throughput seq... Objective This study aimed to establish a neural cell injury model in vitro by stimulating PC12 cells with lipopolysaccharide(LPS)and to examine the effects of astragaloside IV on key targets using high-throughput sequence technology and bioinformatics analyses.Methods PC12 cells in the logarithmic growth phase were treated with LPS at final concentrations of 0.25,0.5,0.75,1,and 1.25 mg/mL for 24 h.Cell morphology was evaluated,and cell survival rates were calculated.A neurocyte inflammatory model was established with LPS treatment,which reached a 50%cell survival rate.PC12 cells were treated with 0.01,0.1,1,10,or 100µmol/L astragaloside IV for 24 h.The concentration of astragaloside IV that did not affect the cell survival rate was selected as the treatment group for subsequent experiments.NOS activity was detected by colorimetry;the expression levels of ERCC2,XRCC4,XRCC2,TNF-α,IL-1β,TLR4,NOS and COX-2 mRNA and protein were detected by RT-qPCR and Western blotting.The differentially expressed genes(DEGs)between the groups were screened using a second-generation sequence(fold change>2,P<0.05)with the following KEGG enrichment analysis,RT-qPCR and Western blotting were used to detect the mRNA and protein expression of DEGs related to the IL-17 pathway in different groups of PC12 cells.Results The viability of PC12 cells was not altered by treatment with 0.01,0.1,or 1µmol/L astragaloside IV for 24 h(P>0.05).However,after treatment with 0.5,0.75,1,or 1.25 mg/mL LPS for 24 h,the viability steadily decreased(P<0.01).The mRNA and protein expression levels of ERCC2,XRCC4,XRCC2,TNF-α,IL-1β,TLR4,NOS,and COX-2 were significantly increased after PC12 cells were treated with 1 mg/mL LPS for 24 h(P<0.01);however,these changes were reversed when PC12 cells were pretreated with 0.01,0.1,or 1µmol/L astragaloside IV in PC12 cells and then treated with 1 mg/mL LPS for 24 h(P<0.05).Second-generation sequencing revealed that 1026 genes were upregulated,while 1287 genes were downregulated.The DEGs were associated with autophagy,TNF-α,interleukin-17,MAPK,P53,Toll-like receptor,and NOD-like receptor signaling pathways.Furthermore,PC12 cells treated with a 1 mg/mL LPS for 24 h exhibited increased mRNA and protein expression of CCL2,CCL11,CCL7,MMP3,and MMP10,which are associated with the IL-17 pathway.RT-qPCR and Western blotting analyses confirmed that the DEGs listed above corresponded to the sequence assay results.Conclusion LPS can damage PC12 cells and cause inflammatory reactions in nerve cells and DNA damage.astragaloside IV plays an anti-inflammatory and DNA damage protective role and inhibits the IL-17 signaling pathway to exert a neuroprotective effect in vitro. 展开更多
关键词 PC12 cells astragaloside IV INFLAMMATION dna damage
下载PDF
DNA Damage-driven Inflammatory Cytokines:Reprogramming of Tumor Immune Microenvironment and Application of Oncotherapy
4
作者 Meng-jie WANG Yu XIA Qing-lei GAO 《Current Medical Science》 SCIE CAS 2024年第2期261-272,共12页
DNA damage occurs across tumorigenesis and tumor development.Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orch... DNA damage occurs across tumorigenesis and tumor development.Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment(TIME)and dominate tumor progression.Accumulating evidence documents that multiple signaling pathways,including cyclic GMP-AMP synthase-stimulator of interferon genes(cGAS-STING)and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein(ATM/ATR),are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines.These cytokines possess multifaced functions in the anti-tumor immune response.Thus,it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines,critical for the development of effective tumor therapies.This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines.We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies. 展开更多
关键词 dna damage tumor immune microenvironment inflammatory cytokines cancer therapy
下载PDF
DNA damage response-related immune activation signature predicts the response to immune checkpoint inhibitors: from gastrointestinal cancer analysis to pan-cancer validation
5
作者 Junya Yan Shibo Wang +20 位作者 Jing Zhang Qiangqiang Yuan Xianchun Gao Nannan Zhang Yan Pan Haohao Zhang Kun Liu Jun Yu Linbin Lu Hui Liu Xiaoliang Gao Sheng Zhao Wenyao Zhang Abudurousuli Reyila Yu Qi Qiujin Zhang Shundong Cang Yuanyuan Lu Yanglin Pan Yan Kong Yongzhan Nie 《Cancer Biology & Medicine》 SCIE CAS CSCD 2024年第3期252-266,共15页
Objective: DNA damage response(DDR) deficiency has emerged as a prominent determinant of tumor immunogenicity. This study aimed to construct a DDR-related immune activation(DRIA) signature and evaluate the predictive ... Objective: DNA damage response(DDR) deficiency has emerged as a prominent determinant of tumor immunogenicity. This study aimed to construct a DDR-related immune activation(DRIA) signature and evaluate the predictive accuracy of the DRIA signature for response to immune checkpoint inhibitor(ICI) therapy in gastrointestinal(GI) cancer.Methods: A DRIA signature was established based on two previously reported DNA damage immune response assays. Clinical and gene expression data from two published GI cancer cohorts were used to assess and validate the association between the DRIA score and response to ICI therapy. The predictive accuracy of the DRIA score was validated based on one ICI-treated melanoma and three pan-cancer published cohorts.Results: The DRIA signature includes three genes(CXCL10, IDO1, and IFI44L). In the discovery cancer cohort, DRIA-high patients with gastric cancer achieved a higher response rate to ICI therapy than DRIA-low patients(81.8% vs. 8.8%;P < 0.001), and the predictive accuracy of the DRIA score [area under the receiver operating characteristic curve(AUC) = 0.845] was superior to the predictive accuracy of PD-L1 expression, tumor mutational burden, microsatellite instability, and Epstein–Barr virus status. The validation cohort demonstrated that the DRIA score identified responders with microsatellite-stable colorectal and pancreatic adenocarcinoma who received dual PD-1 and CTLA-4 blockade with radiation therapy. Furthermore, the predictive performance of the DRIA score was shown to be robust through an extended validation in melanoma, urothelial cancer, and pan-cancer.Conclusions: The DRIA signature has superior and robust predictive accuracy for the efficacy of ICI therapy in GI cancer and pancancer, indicating that the DRIA signature may serve as a powerful biomarker for guiding ICI therapy decisions. 展开更多
关键词 dna damage response-related immune activation immune checkpoint inhibitors biomarker gastrointestinal cancer pan-cancer
下载PDF
TOPK Inhibition Enhances the Sensitivity of Colorectal Cancer Cells to Radiotherapy by Reducing the DNA Damage Response
6
作者 Shi-gui PANG Xin ZHANG +8 位作者 Zhao-xin LI Li-fei HE Feng CHEN Ming-long LIU Ying-ze HUANG Jian-mei MO Kong-lan LUO Juan-juan XIAO Feng ZHU 《Current Medical Science》 SCIE CAS 2024年第3期545-553,共9页
Objective Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase(TOPK)was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistanc... Objective Abnormal expression of T-lymphokine-activated killer cell-originated protein kinase(TOPK)was reported to be closely related to the resistance of prostate cancer to radiotherapy and to targeted drug resistance in lung cancer.However,the role of TOPK inhibition in enhancing radiosensitivity of colorectal cancer(CRC)cells is unclear.This study aimed to evaluate the radiosensitization of TOPK knockdown in CRC cells.Methods The expression of TOPK was detected in CRC tissues by immunohistochemistry,and the effect of TOPK knockdown was detected in CRC cells by Western blotting.CCK-8 and clonogenic assays were used to detect the growth and clonogenic ability of CRC cells after TOPK knockdown combined with radiotherapy in CRC cells.Furthermore,proteomic analysis showed that the phosphorylation of TOPK downstream proteins changed after radiotherapy.DNA damage was detected by the comet assay.Changes in the DNA damage response signaling pathway were analyzed by Western blotting,and apoptosis was detected by flow cytometry.Results The expression of TOPK was significantly greater in CRC tissues at grades 2–4 than in those at grade 1.After irradiation,CRC cells with genetically silenced TOPK had shorter comet tails and reduced expression levels of DNA damage response-associated proteins,including phospho-cyclin-dependent kinase 1(p-CDK1),phospho-ataxia telangiectasia-mutated(p-ATM),poly ADP-ribose polymerase(PARP),and meiotic recombination 11 homolog 1(MRE11).Conclusions TOPK was overexpressed in patients with moderately to poorly differentiated CRC.Moreover,TOPK knockdown significantly enhanced the radiosensitivity of CRC cells by reducing the DNA damage response. 展开更多
关键词 T-lymphokine-activated killer cell-originated protein kinase colorectal cancer dna damage response RADIOSENSITIVITY
下载PDF
Cholesterol and Sericin as First Aid for Damaged Cells
7
作者 Denız Aksoy Doga Naz Turan Zeki Berkay Bayraktar 《Journal of Biosciences and Medicines》 2024年第4期79-88,共10页
Cells are surrounded by a double-layered phospholipid cell membrane responsible for the isolation of intracellular contents, active regulation of uptake from the extracellular environment, and intercellular connection... Cells are surrounded by a double-layered phospholipid cell membrane responsible for the isolation of intracellular contents, active regulation of uptake from the extracellular environment, and intercellular connection and communication. These cell membranes must be intact and functionally active for cell survival and biological functioning. Compromised damage repair mechanisms usually result in impaired cellular homeostasis, leading to early or late problems. Chronic myopathies, certain myocardial diseases, aging, and acute or chronic neurodegenerative diseases (like Parkinson and Alzheimer) are directly related to cell membrane damage. This study examined the effect of a cholesterol-loaded nanoparticle (methyl-beta cyclodextrin) or the silk protein sericin on cell membrane and DNA integrity and cell viability in an in vitro cell damage model (frozen-thawed rabbit sperm cells). The cells were stored in liquid nitrogen (-196°C), thawed in small batches, and treated with cholesterol-loaded cyclodextrin or sericin before incubation at 35°C for 4 hours. Cell membrane integrity, DNA damage, and viability rates were assessed immediately after thawing and after the incubation period. The administration of sericin and cholesterol in a cell damage model increased cell survival and reduced DNA damage over a 4-hour post-thaw incubation period, suggesting their potential use as a “first aid” intervention at the cellular level. 展开更多
关键词 Cell Membrane dna SURVIVAL damage CHOLESTEROL SERICIN SPERMATOZOA
下载PDF
Blue LED promotes the chemosensitivity of human hepatoma to Sorafenib by inducing DNA damage
8
作者 TONG WANG JINHUAN HONG +9 位作者 JIAJIE XIE QIAN LIU JINRUI YUE XUTING HE SHIYU GE TAO LI GUOXIN LIU BENZHI CAI LINQIANG LI YE YUAN 《BIOCELL》 SCIE 2023年第8期1811-1820,共10页
Background:Phototherapies based on sunlight,infrared,ultraviolet,visible,and laser-based treatments present advantages like high curative effects,small invasion,and negligible adverse reactions in cancer treatment.We ... Background:Phototherapies based on sunlight,infrared,ultraviolet,visible,and laser-based treatments present advantages like high curative effects,small invasion,and negligible adverse reactions in cancer treatment.We aimed to explore the potential therapeutic effects of blue light emitting diode(LED)in human hepatoma cells and decipher the underlying cellular and molecular mechanisms.Methods:Wound healing and transwell assays were employed to probe the inhibition of the invasion and migration of hepatocellular carcinoma cells in the presence of blue LED.The sphere-forming test was used to evaluate the effect of LED blue light irradiation on cancer stem cell properties.Immunofluorescence and western blotting were used to detect the changes inγ-H2AX.The Cell Counting Kit-8 assay,5-ethynyl-2′-deoxyuridine staining,and colony formation assay were used to detect the combined effect of blue LED and sorafenib on cell proliferation inhibition.Results:We demonstrated that the irradiation of blue LED light in hepatoma cells could lead to cell proliferation reduction along with the increase of cell apoptosis.Simultaneously,blue LED irradiation also markedly suppressed the migration and invasion ability of human hepatoma cells.Sphere formation analysis further revealed the decreased cancer stemness of hepatoma cells upon blue LED irradiation.Mechanistically,blue LED irradiation significantly promoted the expression of the phosphorylation of the core histone protein H2AX(γ-H2AX),a sensitive molecular marker of DNA damage.In addition,we found that the combined treatment of blue LED irradiation and sorafenib increased cancer cell sensitivity to sorafenib.Conclusion:Collectively,we demonstrated that blue LED irradiation exhibited anti-tumor effects on liver cancer cells by inducing DNA damage and could enhance chemosensitivity of cancer cells,which represents a potential approach for human hepatoma treatment. 展开更多
关键词 Blue LED Irradiation Liver cancer dna damage Chemotherapy resistance
下载PDF
Low-Dose Gamma Radiation Fields Decrease Cell Viability, Damage DNA, and Increase the Expression of Hsp70 and p53 Proteins in Human Leukocytes
9
作者 Jessica Lizbeth Sifuentes Padilla David Alejandro García López +2 位作者 Consuelo Letechipia de León Hector Rene Vega-Carrillo Sergio Hugo Sánchez Rodríguez 《World Journal of Nuclear Science and Technology》 2023年第4期55-72,共18页
Ionizing radiations are tools in diagnosis and treatment of diseases. Leukopenia from exposure to ionizing radiation has been reported. Due to their radiosensitivity, leukocytes are a biological model to analyze cell ... Ionizing radiations are tools in diagnosis and treatment of diseases. Leukopenia from exposure to ionizing radiation has been reported. Due to their radiosensitivity, leukocytes are a biological model to analyze cell damage. Therefore, cell viability, DNA damage, and Hsp70 and p53 expression in human leukocytes exposed to low-dose gamma radiation fields from a <sup>137</sup>Cs source were evaluated. A decrease in cell viability, DNA damage and an increase in the expression of Hsp70 and p53 proportional to the radiation dose received was found, which was 0.2, 0.4, 0.6, 0.8 and 1.0 mGy. 展开更多
关键词 Leukocytes Gamma Radiation Cell damage dna HSP70 p53
下载PDF
DNA Damage and Repair of Two Ecotypes of Phragmites communis Subjected to Water Stress 被引量:3
10
作者 王俊刚 张承烈 《Acta Botanica Sinica》 CSCD 2001年第5期490-494,共5页
In order to thoroughly understand the mechanism Of drought resistance in plants at DNA level, the DNA damage of two ecotypes of reeds (Phragmites communis T.) stressed by PEG 6000 was analyzed by means of fluorescence... In order to thoroughly understand the mechanism Of drought resistance in plants at DNA level, the DNA damage of two ecotypes of reeds (Phragmites communis T.) stressed by PEG 6000 was analyzed by means of fluorescence analysis of DNA unwinding (FADU). The results showed that the residual double strand DNA percentages (dsDNA%) in dune reed (DR) were significantly higher than those in swamp reed (SR) treated with either 20% or 30% PEG 6000. This meant that the DNA of DR was less damaged in comparison with SR. Similarly, DR resisted DNA damage more strongly than SR as reactive oxygen species (ROS) increased by adding ROS producers diethyldithio carbamate (DDC), H2O2 and Fe2+ of different concentrations. Meanwhile, treating PEG stressed SR with ROS scavengers such as dimethyl sulphoxide (DMSO) and ascorbic acid (Vc) resulted in the reduction of DNA damage, suggesting that ROS could cause DNA damage. In addition, the DNA repair for water-stressed reeds indicated that DR repaired DNA damage much faster and more completely. This might be the first indication that drought stress led to DNA damage in plants and that drought resistance of plants was closely related to DNA damage and repair. 展开更多
关键词 dune reed swamp reed water stress reactive oxygen species dna damage of plants in vivo dna repair
下载PDF
完带汤防治脾虚湿盛型外阴阴道假丝酵母菌病的临床疗效及对DNA损伤的影响 被引量:1
11
作者 韩月 沈甦 +1 位作者 傅捷 任青玲 《南京中医药大学学报》 CAS CSCD 北大核心 2024年第2期190-195,共6页
目的探讨完带汤治疗脾虚湿盛型外阴阴道假丝酵母菌病(Vulvovaginal candidiasis,VVC)的临床疗效及对DNA损伤的影响。方法将符合纳入标准的70例脾虚湿盛VVC患者随机分为完带汤组和氟康唑组各35例,治疗期间2组各脱落5例。氟康唑组采用150... 目的探讨完带汤治疗脾虚湿盛型外阴阴道假丝酵母菌病(Vulvovaginal candidiasis,VVC)的临床疗效及对DNA损伤的影响。方法将符合纳入标准的70例脾虚湿盛VVC患者随机分为完带汤组和氟康唑组各35例,治疗期间2组各脱落5例。氟康唑组采用150 mg氟康唑口服一次;完带汤组采用完带汤口服14 d。治疗后比较2组患者中医证候积分变化情况;评估2组患者临床治愈(Test of cure,TOC)率及临床缓解(Clinical improvement,CI)率;比色法检测阴道灌洗液中8-羟基脱氧鸟苷(8-hydroxydeoxyguanosine,8-OHDG)水平变化以评估DNA损伤情况;治疗后3月评估患者访视临床完全缓解(Follow up,FU)、真菌学转阴及复发率。结果治疗后,2组患者中医证候积分均呈现不同程度改善(P<0.05,P<0.01);完带汤组优于氟康唑组(P<0.05,P<0.01);完带汤组TOC、CI、真菌学转阴率与氟康唑组未见明显差异(P>0.05);但完带汤组FU及复发率均显著优于氟康唑组(P<0.05,P<0.01)。治疗后,氟康唑组阴道灌洗液中8-OHDG表达显著增加(P<0.001),完带汤组未见明显变化,显著低于氟康唑组(P<0.001)。结论完带汤总体临床疗效与氟康唑相当,但在改善中医证候、防止复发方面优于氟康唑,同时具有不加剧阴道细胞DNA损伤的优势。 展开更多
关键词 完带汤 外阴阴道假丝酵母菌病 dna损伤 临床疗效
下载PDF
不同运动方式对人体DNA损伤、DNA甲基化和端粒长度的影响 被引量:2
12
作者 杨裴 《中国组织工程研究》 CAS 北大核心 2024年第1期147-152,共6页
背景:运动不仅是改善身体健康和心理健康的有效手段,还对代谢性和心脑血管等疾病的发生、发展具有良好的干预效果,其原因与表观遗传因素有关。目的:总结不同运动方式对人体DNA损伤、DNA甲基化和端粒长度的影响,并分析运动调控表观遗传... 背景:运动不仅是改善身体健康和心理健康的有效手段,还对代谢性和心脑血管等疾病的发生、发展具有良好的干预效果,其原因与表观遗传因素有关。目的:总结不同运动方式对人体DNA损伤、DNA甲基化和端粒长度的影响,并分析运动调控表观遗传修饰的可能机制,以期为运动改善机体功能提供参考。方法:以“运动,有氧训练,急性运动,无氧训练,抗阻训练,DNA损伤,DNA甲基化,端粒”为中文检索词,以“exercise,sport,aerobic exercise,anaerobic exercise,resistance training,acute exercise,DNA methylation,DNA damage,telomere”为英文检索词。在PubMed、Embase、Web of Science、中国知网数据库中进行检索,并根据纳入与排除标准筛选文献,最终纳入70篇文献。结果与结论:①长期有氧、抗阻和无氧运动均能改善DNA损伤,其原因与运动可以提高机体的抗氧化能力有关。而急性运动则会通过上调活性氧和活性氮氧化物的表达进而加剧DNA损伤程度;②急性运动、长期抗阻运动和无氧运动在降低DNA甲基化方面具有积极作用,其关键机制可能是运动诱导的活性氧使氧化型谷胱甘肽/还原型谷胱甘肽比值和DNA甲基化转移酶、10-11易位酶的表达发生了改变,进而对DNA甲基化产生调控作用;③与其他运动形式相比,长时间有氧运动可能更具有增加端粒长度的潜在价值,其中的生物学机制涉及炎症、氧化应激、DNA甲基化和微小RNA的表达调控;④基于当前文献可知,有氧运动持续2年以上可以增加端粒长度,未来的研究也应进一步明确最佳的运动持续时间。 展开更多
关键词 运动 表观遗传 dna损伤 甲基化 端粒
下载PDF
Identification of DNA Damage Caused by Heavy Metal Ions with Small Molecular DNA
13
作者 梅运军 张磊 +2 位作者 毕欢 谢炳辉 朱玉婵 《Agricultural Science & Technology》 CAS 2012年第2期292-294,共3页
[Objective] The aim was to establish a convenient and effective method to evaluate the toxicity of heavy metal ions by using small molecular DNA. [Method] pUC18 DNA which had exposed to the four heavy metal ions of Hg... [Objective] The aim was to establish a convenient and effective method to evaluate the toxicity of heavy metal ions by using small molecular DNA. [Method] pUC18 DNA which had exposed to the four heavy metal ions of Hg2+, Cr6+, Pb2+, Cd2+ was used to study the bioactivity of DNA; simultaneously, gel electrophoresis and hyperchromic effect were employed to detect the mechanism of DNA damage. [Result] The bioactivity of the exposed DNA was decreased and the influence degree was Hg2+Cr6+Pb2+Cd2+; the gel electrophoresis and hyperchromic effect proved that the main reason leading to reduce the bioactivity was DNA cross link, in the order pf Hg2+Cr6+Pb2+Cd2+. [Conclusion] The study indicated that pUC18 DNA could be used to assay the damage of DNA causing by heavy mental ions, which may be a potential, simple and effective tool to evaluate toxicity of heavy metal ions to DNA. 展开更多
关键词 Heavy metal ions dna damage PUC18
下载PDF
DNA损伤修复相关通路的合成致死靶点研究及其在卵巢癌中的应用和前景
14
作者 程洪艳 栾文庆 昌晓红 《中国生物化学与分子生物学报》 CAS CSCD 北大核心 2024年第6期740-748,共9页
DNA损伤引发细胞启动一系列DNA损伤应答(DNA damage response,DDR),包括DNA损伤修复、细胞周期检查点激活、细胞周期阻滞、各种细胞内信号转导途径的活化和细胞凋亡等。DNA损伤修复(DNA damage repair)是细胞维持基因组稳定性的重要机制... DNA损伤引发细胞启动一系列DNA损伤应答(DNA damage response,DDR),包括DNA损伤修复、细胞周期检查点激活、细胞周期阻滞、各种细胞内信号转导途径的活化和细胞凋亡等。DNA损伤修复(DNA damage repair)是细胞维持基因组稳定性的重要机制,于2015年获得诺贝尔化学奖。DNA损伤修复途径主要包括:碱基切除修复(base-excision repair,BER)、核苷酸切除修复(nucleotide excision repair,NER)、错配修复(mismatch repair,MMR)、同源重组(homologous recombination,HR)和非同源末端连接(non-homologous end joining,NHEJ)等,分别在DNA单链断裂(single-strand break,SSB)或双链断裂(double-strand break,DSB)等损伤修复中发挥重要作用。DNA损伤修复缺陷与肿瘤发生发展密切相关,同时也是肿瘤治疗的重要靶点。DNA损伤修复通路的多聚ADP核糖聚合酶(poly-ADP-ribose polymerase,PARP)与乳腺癌易感基因BRCA 1/2等存在合成致死(synthetic lethality)作用,使PARP抑制剂(PARP inhibitor,PARPi)成为第一个也是目前唯一上市的肿瘤治疗合成致死靶药。PARPi在卵巢癌及多种实体瘤治疗中疗效良好,使DNA损伤修复及相关DDR通路的合成致死靶药研发成为热点,其他在研靶点主要包括:共济失调毛细血管扩张突变蛋白(ataxia telangiectasia-mutated protein,ATM)、共济失调毛细血管扩张与RAD3相关蛋白(ataxia telangiectasia and Rad3 related protein,ATR)、DNA依赖性蛋白质激酶催化亚单位(DNA-dependent protein kinase catalytic subunit,DNA-PKcs)、细胞周期检测点激酶1(checkpoint kinase1,CHK1)、细胞周期检测点激酶2(checkpoint kinase 2,CHK2)、阻止有丝分裂的蛋白质激酶WEE1等。PARPi与其他DDR靶药、抗血管生成药物及免疫检查点抑制剂的联用,有可能成为克服PARPi耐药、提高疗效的有效手段和发展前景。本文针对DNA损伤修复及相关DDR通路的关键分子和潜在肿瘤治疗靶点进行综述,阐述了DNA损伤修复相关通路的合成致死靶点研究及在卵巢癌的应用和前景,为基础研究及临床应用提供指导。 展开更多
关键词 卵巢癌 dna损伤应答 dna损伤修复 PARP抑制剂 合成致死 靶向治疗
下载PDF
转录因子MYB转录调控MTFR2通过DNA损伤修复促进胃癌细胞化疗耐药性
15
作者 李春兴 迪力旦·纳斯尔 +1 位作者 托合提阿吉·巴拉提 阿不都外力·吾守尔 《遵义医科大学学报》 2024年第9期857-867,共11页
目的探究v-myb禽成髓细胞病病毒癌基因同源物(MYB)转录调控线粒体裂变调节因子2(MTFR2)对胃癌(GC)细胞顺铂(DDP)耐药性的影响及分子作用机制。方法TCGA数据库分析GC中差异mRNA并预测上游调控分子,qRT-PCR检测MTFR2和MYB的表达,双荧光素... 目的探究v-myb禽成髓细胞病病毒癌基因同源物(MYB)转录调控线粒体裂变调节因子2(MTFR2)对胃癌(GC)细胞顺铂(DDP)耐药性的影响及分子作用机制。方法TCGA数据库分析GC中差异mRNA并预测上游调控分子,qRT-PCR检测MTFR2和MYB的表达,双荧光素酶和染色质免疫共沉淀(ChIP)实验验证MTFR2和MYB的调控关系,细胞计数盒8(CCK-8)检测细胞活力并计算IC_(50)值,流式细胞术检测细胞周期和细胞凋亡,彗星实验检测DNA损伤,蛋白质免疫印迹法检测DNA损伤相关蛋白(γ-H2AX、ATM、p-ATM)的表达。结果MTFR2在GC组织和细胞中显著高表达,敲低MTFR2能够降低细胞增殖,阻滞S期,诱导细胞凋亡,促进DNA损伤和DDP敏感性。生信预测MTFR2存在上游转录因子MYB,MYB在GC组织和细胞中的表达显著上调,双荧光素酶和ChIP验证了MTFR2启动子区域与MYB的结合关系。回复实验发现进一步过表达MTFR2能够逆转敲低MYB对GC细胞增殖和DDP耐药性的抑制作用。结论MYB上调MTFR2的表达通过DNA损伤途径促进GC细胞增殖和DDP耐药,表明靶向MYB/MTFR2调控轴可能是克服GC DDP耐药性的潜在途径。 展开更多
关键词 V-myb禽成髓细胞瘤病毒癌基因同源物 线粒体裂变调节因子2 dna损伤修复 胃癌 顺铂耐药
下载PDF
利用SCGE技术对植物盐胁迫下DNA损伤的研究
16
作者 郭晓丽 刘芯瑜 +4 位作者 刘思萌 马志蕊 左亮 罗博 张旭 《衡水学院学报》 2024年第1期22-26,共5页
以北斗七星蚕豆为试验材料,分别采用0,6,12,18,24,30g/L的6个质量浓度的NaCl溶液处理蚕豆根尖,利用SCGE技术对蚕豆根尖细胞在不同质量浓度盐胁迫下DNA的损伤进行检测,探讨逆境胁迫对植物细胞DNA的损伤效应,并以此建立快速准确的植物DNA... 以北斗七星蚕豆为试验材料,分别采用0,6,12,18,24,30g/L的6个质量浓度的NaCl溶液处理蚕豆根尖,利用SCGE技术对蚕豆根尖细胞在不同质量浓度盐胁迫下DNA的损伤进行检测,探讨逆境胁迫对植物细胞DNA的损伤效应,并以此建立快速准确的植物DNA损伤检测流程。结果表明,盐胁迫会对蚕豆根尖细胞DNA造成损伤,并且随着盐胁迫质量浓度的升高,细胞拖尾加剧,30 g/L盐胁迫下的细胞拖尾最明显;此外,当NaCl溶液质量浓度大于18 g/L时,随着NaCl溶液质量浓度的增加,蚕豆根尖细胞拖尾率逐渐增大,根尖细胞损伤概率增加。通过利用多种比较分析细胞尾部DNA发现,随着盐胁迫质量浓度的增加,细胞的彗星尾长增加显著,同时利用软件分析可增加对DNA损伤的直观检测,具有较好的应用效果。最后,通过对实验过程中涂层琼脂糖溶液和包埋凝胶溶液的制备、载玻片涂胶处理方法等均进行了合理的改良,为后续大批量开展植物逆境胁迫条件的评估提供便利。 展开更多
关键词 SCGE 盐胁迫 根尖细胞 dna损伤
下载PDF
DNA损伤与肿瘤免疫治疗的联合策略——现状与展望
17
作者 王琦 严俊芳 胡步荣 《兰州大学学报(医学版)》 2024年第7期1-11,21,共12页
免疫治疗,尤其是免疫检查点抑制,已成为癌症治疗的重要手段。然而,大多数癌症中仅有少数患者对免疫检查点阻断有反应。随着对肿瘤免疫治疗认识的深入,DNA损伤与修复机制在肿瘤免疫逃逸中的作用愈发显著。基因组不稳定性和DNA损伤应答的... 免疫治疗,尤其是免疫检查点抑制,已成为癌症治疗的重要手段。然而,大多数癌症中仅有少数患者对免疫检查点阻断有反应。随着对肿瘤免疫治疗认识的深入,DNA损伤与修复机制在肿瘤免疫逃逸中的作用愈发显著。基因组不稳定性和DNA损伤应答的缺陷,尤其是在放射治疗和化学治疗的背景下,能够增强免疫检查点阻断的疗效。尽管研究已取得积极进展,但如何精准地调控DNA损伤应答以及优化联合治疗策略,提高疗效和减少毒副作用,仍是未来研究的重点。本文详细讨论放射治疗和化学治疗等传统基因毒性治疗与免疫检查点阻断联合治疗策略的免疫调节机制,探讨干扰素基因刺激因子激动剂和DNA损伤应答抑制剂在联合治疗中的潜力,还提出基于DNA损伤应答靶向抑制与免疫治疗联合应用的新策略,强调了结合传统治疗和新型免疫调节策略以及开发生物标志物的重要性。 展开更多
关键词 dna损伤应答 免疫检查点阻断 肿瘤免疫治疗 联合治疗 放射治疗 化学治疗 干扰素基因刺激因子
下载PDF
Single Cell Gel Electrophoresis Assay of Porcine Leydig Cell DNA Damage Induced by Zearalenone 被引量:1
18
作者 甄建伟 刘青 +5 位作者 顾建红 袁燕 刘学忠 王捍东 刘宗平 卞建春 《Agricultural Science & Technology》 CAS 2012年第7期1587-1590,1594,共5页
[Objective] This study aimed to investigate the effect of zearalenone (ZEN) on DNA damage of porcine leydig cells. [Method] Porcine leydig cells cultured in vitro were collected to determine the median lethal dose (LD... [Objective] This study aimed to investigate the effect of zearalenone (ZEN) on DNA damage of porcine leydig cells. [Method] Porcine leydig cells cultured in vitro were collected to determine the median lethal dose (LD50) of ZEN with tetrazolium-based colorimetric assay (MTT assay). Comet assay was carried out to detect the DNA damage of porcine leydig cells exposed to at 0 (negative group), 1, 5, 10, 20, 40 μmol/L of ZEN. [Result] The percentage of cell tail was 16.67%, 34.00%, 40.67%, 52.00% and 64.67% under 0, 1, 5, 10 and 20 μmol/L of ZEN, respectively; the differences between the percentages of cell tail in various experimental groups had extremely significant statistical significance compared with the negative group (P<0.01), showing a significant dose-effect relationship; Tail length in various groups was 57.60±4.78, 57.75±6.25, 78.97±5.83, 100.50±6.94 and 146.83±12.31 μm, respectively; Tail DNA % in various groups was 21.29±2.25%, 22.24±2.43%, 31.21±6.27%, 37.45±4.33% and 60.68±9.83%, respectively; Tail length and Tail DNA % in experimental groups with ZEN concentration above 5 μmol/L showed significant differences (P<0.05) compared with the negative group, which showed an upward trend with the increase of ZEN concentration. [Conclusion] ZEN has genotoxic effect on porcine leydig cells, which can cause DNA damage, with a significant dose-effect relationship. 展开更多
关键词 Leydig cells ZEARALENONE dna damage Comet assay (Single cell gel electrophoresis assay)
下载PDF
精子DNA损伤与精液参数、胚胎发育及复发性流产相关性分析 被引量:1
19
作者 蔡焕元 陈以德 +4 位作者 张宇 王静 张考珍 温海鹏 叶惠香 《中外医学研究》 2024年第7期54-57,共4页
目的:观察精子DNA损伤与精液参数、胚胎发育及复发性流产(recurrent spontaneous abortion,RSA)的相关性。方法:选择2019年1月—2022年3月佛山市高明区人民医院收治的300例有生育要求的精子DNA损伤患者设为观察组,再选择同期50例精子形... 目的:观察精子DNA损伤与精液参数、胚胎发育及复发性流产(recurrent spontaneous abortion,RSA)的相关性。方法:选择2019年1月—2022年3月佛山市高明区人民医院收治的300例有生育要求的精子DNA损伤患者设为观察组,再选择同期50例精子形态正常(精子正常形态比率≥4%)但配偶为RSA患者的男性设为流产组,50例有生育要求的健康男性设为对照组。比较三组精液参数(精子密度、精子活力、精子形态),根据精子DNA碎片指数将观察组患者分为高损伤组(精子DNA碎片指数≥30%,n=127)和低损伤组(精子DNA碎片指数<30%,n=173),随访比较两亚组患者配偶(自然怀孕和应用辅助生殖技术成功怀孕后)胚胎发育情况及RSA发生情况,分析精子DNA损伤与精子密度、精子活力、精子形态、患者配偶胚胎发育、RSA发生的相关性。结果:三组精液参数比较,差异有统计学意义(P<0.05);观察组精子密度、精子活力、精子形态均低于流产组、对照组,且流产组低于对照组,差异有统计学意义(P<0.05)。高损伤组治疗后自然成功怀孕配偶胚胎发育停滞率、RSA发生率高于低损伤组,差异有统计学意义(P<0.05);高损伤组应用辅助生殖技术成功怀孕胚胎发育停滞率为6.97%,RSA发生率为11.63%。精子DNA碎片指数与精子密度、精子活力、精子形态呈负相关(P<0.05),与患者配偶自然怀孕后胚胎发育停滞、RSA发生呈正相关(P<0.05)。结论:精子DNA损伤与精液参数、胚胎发育及RSA具有一定相关性,精子DNA损伤程度越高,其精液质量越差,自然怀孕后胚胎发育停滞、RSA发生可能性越高,临床可根据患者精子DNA损伤情况,评估不育原因,为临床妊娠选择提供参考依据。 展开更多
关键词 精子dna 损伤 精液参数 胚胎发育 复发性流产
下载PDF
Apoptosis and DNA damage in human spermatozoa 被引量:47
20
作者 R John Aitken Adam J Koppers 《Asian Journal of Andrology》 SCIE CAS CSCD 2011年第1期36-42,共7页
DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, in... DNA damage is frequently encountered in spermatozoa of subfertile males and is correlated with a range of adverse clinical outcomes including impaired fertilization, disrupted preimplantation embryonic development, increased rates of miscarriage and an enhanced risk of disease in the progeny. The etiology of DNA fragmentation in human spermatozoa is closely correlated with the appearance of oxidative base adducts and evidence of impaired spermiogenesis. We hypothesize that oxidative stress impedes spermiogenesis, resulting in the generation of spermatozoa with poorly remodelled chromatin. These defective cells have a tendency to default to an apeptotic pathway associated with motility loss, caspase activation, phosphatidylserine exteriorization and the activation of free radical generation by the mitochondria. The latter induces lipid peroxidation and oxidative DNA damage, which then leads to DNA fragmentation and cell death. The physical architecture of spermatozoa prevents any nucleases activated as a result of this apoptotic process from gaining access to the nuclear DNA and inducing its fragmentation. It is for this reason that a majority of the DNA damage encountered in human spermatozoa seems to be oxidative. Given the important role that oxidative stress seems to have in the etiology of DNA damage, there should be an important role for antioxidants in the treatment of this condition. If oxidative DNA damage in spermatozoa is providing a sensitive readout of systemic oxidative stress, the implications of these findings could stretch beyond our immediate goal of trying to minimize DNA damage in spermatozoa as a prelude to assisted conception therapy. 展开更多
关键词 APOPTOSIS dna damage oxidative stress SPERMATOZOA
下载PDF
上一页 1 2 190 下一页 到第
使用帮助 返回顶部