Plasmid DNA was irradiated or implanted by mixed particle field(CR) or lithium-ion-beam to detect strand breaks.The primary results showed that mixed particle field could induce single and double strand breaks with po...Plasmid DNA was irradiated or implanted by mixed particle field(CR) or lithium-ion-beam to detect strand breaks.The primary results showed that mixed particle field could induce single and double strand breaks with positive linear-dose-effects;most of sequence changes induced by CR were point mutant.Lithium-ion-beam could induce strand breaks also,but it was only at dose of 20Gy.展开更多
The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. F...The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. Failure of the DNA damage response can lead to development of malignancy by reducing the efficiency and fidelity of DNA repair. The NBS1 protein is a component of the MRE11/RAD50/NBS 1 complex (MRN) that plays a critical role in the cellular response to DNA damage and the maintenance of chromosomal integrity. Mutations in the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), a hereditary disorder that imparts an increased predisposition to development of malignancy. The phenotypic characteristics of cells isolated from NBS patients point to a deficiency in the repair of DNA double strand breaks. Here, we review the current knowledge of the role of NBS1 in the DNA damage response. Emphasis is placed on the role of NBS1 in the DNA double strand repair, modulation of the DNA damage sensing and signaling, cell cycle checkpoint control and maintenance oftelomere stability.展开更多
Mercury (Hg) is one of the commonly encountered heavy metals, which is widespread in inshore sediments of China. In order to investigate the toxicity of Hg on marine invertebrates, we studied the effects of the diva...Mercury (Hg) is one of the commonly encountered heavy metals, which is widespread in inshore sediments of China. In order to investigate the toxicity of Hg on marine invertebrates, we studied the effects of the divalent mercuricion (Hg2+) (at two final concentrations of 0.0025 and 0.0050mgL-1, prepared with HgC12) on metallothionein (MT) content, DNA integrity (DNA strand breaks) and catalase (CAT) in the gills and hepatopancreas, antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the hemolymph, gills and hepatopancreas of the portunid crab Chao,bdisjaponica for an experiment period up to 15 d. The results indicated that MT was significantly induced after 3 d, with a positive correlation with Hg2+ dose and time in the hepatopancreas and a negative correlation with Hg2+ dose and time in the gills. While CAT in the hemolymph was not detected, it increased in the hepatopancreas during the entire experiment; SOD and GPx in the three tissues were stimulated after 12h, both attained peak value and then reduced during the experimental period. Meanwhile, DNA strand breaks were all induced significantly after 12 h. These results suggested the detoxification strategies against Hg2+ in three tissues of C. japonica.展开更多
Benzene is an established leukotoxin and leukemogen in humans. We have previously re- ported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein k...Benzene is an established leukotoxin and leukemogen in humans. We have previously re- ported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phos- phorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apop- tosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.展开更多
DNA damage response (DDR) in different cell cycle status of human peripheral blood lymphocytes (PBLs) and the role of H2AX in DDR were investigated. The PBLs were stimulated into cell cycle with phytohemagglutinin...DNA damage response (DDR) in different cell cycle status of human peripheral blood lymphocytes (PBLs) and the role of H2AX in DDR were investigated. The PBLs were stimulated into cell cycle with phytohemagglutinin (PHA). The apoptotic ratio and the phosphorylation H2AX (S139) were flow cytometrically measured in resting and proliferating PBLs after treatment with camptothecin (CPT) or X-ray. The expressions of γH2AX, Bcl-2, caspase-3 and caspase-9 were detected by Western blotting. DDR in 293T cells was detected after H2AX was silenced by RNAi method. Our results showed that DNA double strand breaks (DSBs) were both induced in quiescent and proliferating PBLs after CPT or X-ray treatment. The phosphorylation of H2AX and apoptosis were more sensitive in proliferating PBLs compared with quiescent lymphocytes (P0.05). The expression levels of anti-apoptotic proteins Bcl-2 were reduced and cleaved caspase-3 and caspase-9 were increased. No significant changes were observed in CPT-induced apoptosis in 293T cells between H2AX knocking down group and controls. It was concluded that proliferating PBLs were more vulnerable to DNA damage compared to non-stimulated lymphocytes and had higher apoptosis rates. γH2AX may only serve as a marker of DNA damage but exert no effect on apoptosis regulation.展开更多
Objective Improper land disposal of hazardous waste can result in leaching of hazardous constituents which may contaminate ground and surface water leading to adverse impact on human health and environment consequenc...Objective Improper land disposal of hazardous waste can result in leaching of hazardous constituents which may contaminate ground and surface water leading to adverse impact on human health and environment consequences. The present study utilized mammalian cell culture for the genotoxicity assessment of waste and its leachate. Methods Genotoxic potential and chemical analysis of pesticide derived tarry waste contaminated soil extract and its leachate was assessed using in vitro human lymphocyte cultures and GC-MS. Results The investigation revealed that the soil extract could cause significant to highly significant genotoxicity in the form of DNA strand break at 25 mL (P<0.01), 50 mL, 100 mL and 200 mL (P<0.001) and chromosomal aberration at 25 mL (P<0.01) and 50 mL and 100 mL (P<0.001). The leachate could cause significant DNA strand break and chromosomal aberration only at 100 mL and 200 mL (P<0.01) dose levels. Conclusion The genotoxicity observed is attributed to carbaril and tetra methyl naphthyl carbamate, the major ingredients of the extracts, as revealed by GC-MS.展开更多
Objective To study the anticlastogenic effect of redistilled cow's urine distillate (RCUD) in human peripheral lymphocytes (HLC) challenged with manganese dioxide and hexavalent chromium. Methods The anticlastoge...Objective To study the anticlastogenic effect of redistilled cow's urine distillate (RCUD) in human peripheral lymphocytes (HLC) challenged with manganese dioxide and hexavalent chromium. Methods The anticlastogenic activity of redistilled cow's urine distillate was studied in human polymorphonuclear leukocytes (HPNLs) and human peripheral lymphocytes in vitro challenged with manganese dioxide and hexavalent chromium as established genotoxicants and clastogens which could cause induction of DNA strand break, chromosomal aberration and micronucleus. Three different levels of RCUD: 1 μL/mL, 50 μL/mL and 100 μL/mL, were used in the study. Results Manganese dioxide and hexavalent chromium caused statistically significant DNA strand break, chromosomal aberration and micronucleus formation, which could be protected by redisfilled cow's urine distillate. Conclusion The redistilled cow's urine distillate posseses strong anfigenotoxic and antielastogenic properties against HPNLs and HLC treated with Cr^+6 and MnO2. This property is mainly due to the antioxidants present in RCUD.展开更多
Objective To study the modulatory effect of distillate of Ocimum sanctum (traditionally known as Tulsi) leaf extract (DTLE) on genotoxicants. Methods In the present investigation, we studied the antigenotoxic and ...Objective To study the modulatory effect of distillate of Ocimum sanctum (traditionally known as Tulsi) leaf extract (DTLE) on genotoxicants. Methods In the present investigation, we studied the antigenotoxic and anticlastogenic effect of distillate of Tulsi leaf extract on (i) human polymorphonuclear leukocytes by evaluating the DNA strand break without metabolic activation against mitomycin C (MMC) and hexavalent chromium (Cr^+6) and (ii) human peripheral lymphocytes (in vitro) with or without metabolic activation against mitomycin C (MMC), hexavalent chromium (Cr^+6) and B[a]P by evaluating chromosomal aberration (CA) and micronucleus assay (MN). Three different doses of DTLE, 50 μL/mL, 100 μL/mL, and 200 μL/mL were selected on the basis of cytotoxicity assay and used for studying DNA strand break, chromosomal aberration and micronucleus emergence. The following positive controls were used for inducing genotoxicity and clastogenicity MMC (0.29 μmol/L) for DNA strand break, chromosomal aberration and 0.51 μmol/L for micronucleus assay; Potassium dichromate (Cr^+6) 600 μmol/L for DNA strand break and 5 μmol/L for chromosomal aberration and micronucleus assay; Benzo[a]pyrene (30 μmol/L) for chromosomal aberration and 40 μmol/L for micronucleus assay. The active ingredients present in the distillate of Tulsi leaf extract were identified by HPLC and LC-MS. Results Mitomycin C (MMC) and hexavalent chromium (Cr^+6) induced statistically significant DNA strand break of respectively 69% and 71% (P〈0.001) as revealed by fluorometric analysis of DNA unwinding. Furthermore, the damage could be protected with DTLE (50 μL/mL, 100 μL/mL, and 200 μL/mL) on simultaneous treatment. Chromosomal aberration and micronucleus formation induced by MMC, Cr^+6 and B[a]P were significantly protected (P〈0.001) by DTLE with and without metabolic activation. Conclusion Distillate of Tulsi leaf extract possesses antioxidants contributed mainly by eugenol, luteolin and apigenin as identified by LC-MS. These active ingredients may have the protective effect against genotoxicants.展开更多
Spatial chromatin structure plays fundamental roles in many vital biological processes including DNA replication, transcription,damage and repair. However, the current understanding of the secondary structure of chrom...Spatial chromatin structure plays fundamental roles in many vital biological processes including DNA replication, transcription,damage and repair. However, the current understanding of the secondary structure of chromatin formed by local nucleosomenucleosome interactions remains controversial, especially for the existence and conformation of 30 nm structure. Since chromatin structure influences the fragment length distribution(FLD) of ionizing radiation-induced DNA strand breaks, a 3D chromatin model fitting FLD patterns can help to distinguish different models of chromatin structure. Here, we developed a novel "30-C" model combining 30 nm chromatin structure models with Hi-C data, which measured the spatial contact frequency between different loci in the genome. We first reconstructed the 3D coordinates of the 25 kb bins from Hi-C heatmaps. Within the25 kb bins, lower level chromatin structures supported by recent studies were filled. Simulated FLD patterns based on the 30-C model were compared to published FLD patterns induced by heavy ion radiation to validate the models. Importantly, the 30-C model predicted that the most probable chromatin fiber structure for human interphase fibroblasts in vivo was 45% zig-zag 30 nm fibers and 55% 10 nm fibers.展开更多
Chromosomal aberrations have been associated with cancer development since their discovery more than a hundred years ago.Chromosomal translocations,a type of particular structural changes involving heterologous chromo...Chromosomal aberrations have been associated with cancer development since their discovery more than a hundred years ago.Chromosomal translocations,a type of particular structural changes involving heterologous chromosomes,have made a critical impact on diagnosis,prognosis and treatment of cancers.For example,the discovery of translocation between chromosomes 9 and 22 and the subsequent success of targeting the fusion product BCR-ABL transformed the therapy for chronic myelogenous leukemia.In the past few decades,tremendous progress has been achieved towards elucidating the mechanism causing chromosomal translocations.This review focuses on the basic mechanisms underlying the generation of chromosomal translocations.In particular,the contribution of frequency of DNA double strand breaks and spatial proximity of translocating loci is discussed.展开更多
文摘Plasmid DNA was irradiated or implanted by mixed particle field(CR) or lithium-ion-beam to detect strand breaks.The primary results showed that mixed particle field could induce single and double strand breaks with positive linear-dose-effects;most of sequence changes induced by CR were point mutant.Lithium-ion-beam could induce strand breaks also,but it was only at dose of 20Gy.
文摘The genomes of eukaryotic cells are under continuous assault by environmental agents and endogenous metabolic byproducts. Damage induced in DNA usually leads to a cascade of cellular events, the DNA damage response. Failure of the DNA damage response can lead to development of malignancy by reducing the efficiency and fidelity of DNA repair. The NBS1 protein is a component of the MRE11/RAD50/NBS 1 complex (MRN) that plays a critical role in the cellular response to DNA damage and the maintenance of chromosomal integrity. Mutations in the NBS1 gene are responsible for Nijmegen breakage syndrome (NBS), a hereditary disorder that imparts an increased predisposition to development of malignancy. The phenotypic characteristics of cells isolated from NBS patients point to a deficiency in the repair of DNA double strand breaks. Here, we review the current knowledge of the role of NBS1 in the DNA damage response. Emphasis is placed on the role of NBS1 in the DNA double strand repair, modulation of the DNA damage sensing and signaling, cell cycle checkpoint control and maintenance oftelomere stability.
基金supported by the 111 Project (B0804)the Agricultural Science and Technology Achievement Transfer Project of TianJin City of China (07050201)
文摘Mercury (Hg) is one of the commonly encountered heavy metals, which is widespread in inshore sediments of China. In order to investigate the toxicity of Hg on marine invertebrates, we studied the effects of the divalent mercuricion (Hg2+) (at two final concentrations of 0.0025 and 0.0050mgL-1, prepared with HgC12) on metallothionein (MT) content, DNA integrity (DNA strand breaks) and catalase (CAT) in the gills and hepatopancreas, antioxidant enzyme activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), in the hemolymph, gills and hepatopancreas of the portunid crab Chao,bdisjaponica for an experiment period up to 15 d. The results indicated that MT was significantly induced after 3 d, with a positive correlation with Hg2+ dose and time in the hepatopancreas and a negative correlation with Hg2+ dose and time in the gills. While CAT in the hemolymph was not detected, it increased in the hepatopancreas during the entire experiment; SOD and GPx in the three tissues were stimulated after 12h, both attained peak value and then reduced during the experimental period. Meanwhile, DNA strand breaks were all induced significantly after 12 h. These results suggested the detoxification strategies against Hg2+ in three tissues of C. japonica.
文摘Benzene is an established leukotoxin and leukemogen in humans. We have previously re- ported that exposure of workers to benzene and to benzene metabolite hydroquinone in cultured cells induced DNA-dependent protein kinase catalytic subunit (DNA-PKcs) to mediate the cellular response to DNA double strand break (DSB) caused by DNA-damaging metabolites. In this study, we used a new, small molecule, a selective inhibitor of DNA-PKcs, 2-(morpholin-4-yl)-benzo[h]chomen-4-one (NU7026), as a probe to analyze the molecular events and pathways in hydroquinone-induced DNA DSB repair and apoptosis. Inhibition of DNA-PKcs by NU7026 markedly potentiated the apoptotic and growth inhibitory effects of hydroquinone in proerythroid leukemic K562 cells in a dose-dependent manner. Treatment with NU7026 did not alter the production of reactive oxygen species and oxidative stress by hydroquinone but repressed the protein level of DNA-PKcs and blocked the induction of the kinase mRNA and protein expression by hydroquinone. Moreover, hydroquinone increased the phos- phorylation of Akt to activate Akt, whereas co-treatment with NU7026 prevented the activation of Akt by hydroquinone. Lastly, hydroquinone and NU7026 exhibited synergistic effects on promoting apop- tosis by increasing the protein levels of pro-apoptotic proteins Bax and caspase-3 but decreasing the protein expression of anti-apoptotic protein Bcl-2. Taken together, the findings reveal a central role of DNA-PKcs in hydroquinone-induced hematotoxicity in which it coordinates DNA DSB repair, cell cycle progression, and apoptosis to regulate the response to hydroquinone-induced DNA damage.
基金supported by grants from Program 973 from Ministry of ScienceTechnology of China (Nos. 2004CB518705, 2009CB5218702)the National Natural Sciences Foundation of China (Nos. 30872472, 30800569)
文摘DNA damage response (DDR) in different cell cycle status of human peripheral blood lymphocytes (PBLs) and the role of H2AX in DDR were investigated. The PBLs were stimulated into cell cycle with phytohemagglutinin (PHA). The apoptotic ratio and the phosphorylation H2AX (S139) were flow cytometrically measured in resting and proliferating PBLs after treatment with camptothecin (CPT) or X-ray. The expressions of γH2AX, Bcl-2, caspase-3 and caspase-9 were detected by Western blotting. DDR in 293T cells was detected after H2AX was silenced by RNAi method. Our results showed that DNA double strand breaks (DSBs) were both induced in quiescent and proliferating PBLs after CPT or X-ray treatment. The phosphorylation of H2AX and apoptosis were more sensitive in proliferating PBLs compared with quiescent lymphocytes (P0.05). The expression levels of anti-apoptotic proteins Bcl-2 were reduced and cleaved caspase-3 and caspase-9 were increased. No significant changes were observed in CPT-induced apoptosis in 293T cells between H2AX knocking down group and controls. It was concluded that proliferating PBLs were more vulnerable to DNA damage compared to non-stimulated lymphocytes and had higher apoptosis rates. γH2AX may only serve as a marker of DNA damage but exert no effect on apoptosis regulation.
文摘Objective Improper land disposal of hazardous waste can result in leaching of hazardous constituents which may contaminate ground and surface water leading to adverse impact on human health and environment consequences. The present study utilized mammalian cell culture for the genotoxicity assessment of waste and its leachate. Methods Genotoxic potential and chemical analysis of pesticide derived tarry waste contaminated soil extract and its leachate was assessed using in vitro human lymphocyte cultures and GC-MS. Results The investigation revealed that the soil extract could cause significant to highly significant genotoxicity in the form of DNA strand break at 25 mL (P<0.01), 50 mL, 100 mL and 200 mL (P<0.001) and chromosomal aberration at 25 mL (P<0.01) and 50 mL and 100 mL (P<0.001). The leachate could cause significant DNA strand break and chromosomal aberration only at 100 mL and 200 mL (P<0.01) dose levels. Conclusion The genotoxicity observed is attributed to carbaril and tetra methyl naphthyl carbamate, the major ingredients of the extracts, as revealed by GC-MS.
文摘Objective To study the anticlastogenic effect of redistilled cow's urine distillate (RCUD) in human peripheral lymphocytes (HLC) challenged with manganese dioxide and hexavalent chromium. Methods The anticlastogenic activity of redistilled cow's urine distillate was studied in human polymorphonuclear leukocytes (HPNLs) and human peripheral lymphocytes in vitro challenged with manganese dioxide and hexavalent chromium as established genotoxicants and clastogens which could cause induction of DNA strand break, chromosomal aberration and micronucleus. Three different levels of RCUD: 1 μL/mL, 50 μL/mL and 100 μL/mL, were used in the study. Results Manganese dioxide and hexavalent chromium caused statistically significant DNA strand break, chromosomal aberration and micronucleus formation, which could be protected by redisfilled cow's urine distillate. Conclusion The redistilled cow's urine distillate posseses strong anfigenotoxic and antielastogenic properties against HPNLs and HLC treated with Cr^+6 and MnO2. This property is mainly due to the antioxidants present in RCUD.
文摘Objective To study the modulatory effect of distillate of Ocimum sanctum (traditionally known as Tulsi) leaf extract (DTLE) on genotoxicants. Methods In the present investigation, we studied the antigenotoxic and anticlastogenic effect of distillate of Tulsi leaf extract on (i) human polymorphonuclear leukocytes by evaluating the DNA strand break without metabolic activation against mitomycin C (MMC) and hexavalent chromium (Cr^+6) and (ii) human peripheral lymphocytes (in vitro) with or without metabolic activation against mitomycin C (MMC), hexavalent chromium (Cr^+6) and B[a]P by evaluating chromosomal aberration (CA) and micronucleus assay (MN). Three different doses of DTLE, 50 μL/mL, 100 μL/mL, and 200 μL/mL were selected on the basis of cytotoxicity assay and used for studying DNA strand break, chromosomal aberration and micronucleus emergence. The following positive controls were used for inducing genotoxicity and clastogenicity MMC (0.29 μmol/L) for DNA strand break, chromosomal aberration and 0.51 μmol/L for micronucleus assay; Potassium dichromate (Cr^+6) 600 μmol/L for DNA strand break and 5 μmol/L for chromosomal aberration and micronucleus assay; Benzo[a]pyrene (30 μmol/L) for chromosomal aberration and 40 μmol/L for micronucleus assay. The active ingredients present in the distillate of Tulsi leaf extract were identified by HPLC and LC-MS. Results Mitomycin C (MMC) and hexavalent chromium (Cr^+6) induced statistically significant DNA strand break of respectively 69% and 71% (P〈0.001) as revealed by fluorometric analysis of DNA unwinding. Furthermore, the damage could be protected with DTLE (50 μL/mL, 100 μL/mL, and 200 μL/mL) on simultaneous treatment. Chromosomal aberration and micronucleus formation induced by MMC, Cr^+6 and B[a]P were significantly protected (P〈0.001) by DTLE with and without metabolic activation. Conclusion Distillate of Tulsi leaf extract possesses antioxidants contributed mainly by eugenol, luteolin and apigenin as identified by LC-MS. These active ingredients may have the protective effect against genotoxicants.
基金the National Natural Science Foundation of China (NSFC) (11875079 and 11434001)supported by NSFC (31871266)+1 种基金the National Key Research and Development Project of China (2016YFA0100103)NSFC Key Research Grant 71532001。
文摘Spatial chromatin structure plays fundamental roles in many vital biological processes including DNA replication, transcription,damage and repair. However, the current understanding of the secondary structure of chromatin formed by local nucleosomenucleosome interactions remains controversial, especially for the existence and conformation of 30 nm structure. Since chromatin structure influences the fragment length distribution(FLD) of ionizing radiation-induced DNA strand breaks, a 3D chromatin model fitting FLD patterns can help to distinguish different models of chromatin structure. Here, we developed a novel "30-C" model combining 30 nm chromatin structure models with Hi-C data, which measured the spatial contact frequency between different loci in the genome. We first reconstructed the 3D coordinates of the 25 kb bins from Hi-C heatmaps. Within the25 kb bins, lower level chromatin structures supported by recent studies were filled. Simulated FLD patterns based on the 30-C model were compared to published FLD patterns induced by heavy ion radiation to validate the models. Importantly, the 30-C model predicted that the most probable chromatin fiber structure for human interphase fibroblasts in vivo was 45% zig-zag 30 nm fibers and 55% 10 nm fibers.
基金supported by University of Colorado School of Medicine start-up fundLeukemia Research FoundationBoettcher Foundation for J.H.W.J.H.W.is a recipient of Boettcher Foundation Webb-Waring Biomedical Research Award.
文摘Chromosomal aberrations have been associated with cancer development since their discovery more than a hundred years ago.Chromosomal translocations,a type of particular structural changes involving heterologous chromosomes,have made a critical impact on diagnosis,prognosis and treatment of cancers.For example,the discovery of translocation between chromosomes 9 and 22 and the subsequent success of targeting the fusion product BCR-ABL transformed the therapy for chronic myelogenous leukemia.In the past few decades,tremendous progress has been achieved towards elucidating the mechanism causing chromosomal translocations.This review focuses on the basic mechanisms underlying the generation of chromosomal translocations.In particular,the contribution of frequency of DNA double strand breaks and spatial proximity of translocating loci is discussed.