In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustr...In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.展开更多
With a special gauge transformation,the Lax pair of the derivative nonlinear Shcrdinger (DNLS) equation turns to depend on the squared parameter λ = k2instead of the usual spec-tral parameter k. By introducing a new ...With a special gauge transformation,the Lax pair of the derivative nonlinear Shcrdinger (DNLS) equation turns to depend on the squared parameter λ = k2instead of the usual spec-tral parameter k. By introducing a new direct product of Jost solu-tions,the complete Hamiltonian theory of the DNLS equation is constructed on the basis of the squared spectral parameter,which shows that the integrability completeness is still preserved. This result will be beneficial to the further study of the DNLS equation,such as the direct perturbation method.展开更多
By means of some algebraic techniques,especially the Binet-Cauchy formula,an explicit multi-soliton solution of the derivative nonlinear Schrdinger equation with vanishing boundary condition is attained based on a pur...By means of some algebraic techniques,especially the Binet-Cauchy formula,an explicit multi-soliton solution of the derivative nonlinear Schrdinger equation with vanishing boundary condition is attained based on a pure Marchenko formalism without needing the usual scattering data except for given N simple poles. The one-and two-soliton solutions are given as two special examples in illustration of the general formula of multi-soliton solution. Their effectiveness and equivalence to other approaches are also demonstrated. Meanwhile,the asymptotic behavior of the multi-soliton solution is discussed in detail. It is shown that the N-soliton solution can be viewed as a summation of N one-soliton solutions with a definite displacement and phase shift of each soliton in the whole process(from t →∞ to t → +∞ ) of the elastic collisions.展开更多
We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it ca...We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann- Hilbert problem formulated in the plane of the complex spectral parameter ξ. This problem has explicit (x, t) dependence, and it has jumps across {ξ∈C|Imξ^4 = 0}. The relevant jump matrices are explicitely given in terms of the spectral functions {a(ξ), b(ξ)}, {A(ξ), B(ξ)}, and {A(ξ), B(ξ)}, which in turn are defined in terms of the initial data q0(x) = q(x, 0), the bound- ary data g0(t)= q(0, t), g1(t) = qx(0, t), and another boundary values f0(t) = q(L, t), f1(t) = qx(L, t). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.展开更多
We study a nonintegrable discrete nonlinear SchriSdinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformati...We study a nonintegrable discrete nonlinear SchriSdinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term.展开更多
The derivative nonlinear Schrodinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota...The derivative nonlinear Schrodinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota's bilinear formalism, and the rogue wave solution is derived as a long-wave limit of the space periodic solution.展开更多
基金the Postdoctoral Fund of Huazhong University of Science and Technology under Grant No.0128011006
文摘In this note, it is shown that the revision of the Kaup-Newell's works on 1ST for DNLS equation is only available in the ease of solving the bright one-soliton solution to the equation. An example is taken to illustrate our point of view.
基金Supported by the National Natural Science Foundation of China (10705022)
文摘With a special gauge transformation,the Lax pair of the derivative nonlinear Shcrdinger (DNLS) equation turns to depend on the squared parameter λ = k2instead of the usual spec-tral parameter k. By introducing a new direct product of Jost solu-tions,the complete Hamiltonian theory of the DNLS equation is constructed on the basis of the squared spectral parameter,which shows that the integrability completeness is still preserved. This result will be beneficial to the further study of the DNLS equation,such as the direct perturbation method.
基金Supported by the National Natural Science Foundation of China (10775105)
文摘By means of some algebraic techniques,especially the Binet-Cauchy formula,an explicit multi-soliton solution of the derivative nonlinear Schrdinger equation with vanishing boundary condition is attained based on a pure Marchenko formalism without needing the usual scattering data except for given N simple poles. The one-and two-soliton solutions are given as two special examples in illustration of the general formula of multi-soliton solution. Their effectiveness and equivalence to other approaches are also demonstrated. Meanwhile,the asymptotic behavior of the multi-soliton solution is discussed in detail. It is shown that the N-soliton solution can be viewed as a summation of N one-soliton solutions with a definite displacement and phase shift of each soliton in the whole process(from t →∞ to t → +∞ ) of the elastic collisions.
基金supported by grants from the National Science Foundation of China (10971031 11271079+2 种基金 11075055)Doctoral Programs Foundation of the Ministry of Education of Chinathe Shanghai Shuguang Tracking Project (08GG01)
文摘We use the Fokas method to analyze the derivative nonlinear Schrodinger (DNLS) equation iqt (x, t) = -qxx (x, t)+(rq^2)x on the interval [0, L]. Assuming that the solution q(x, t) exists, we show that it can be represented in terms of the solution of a matrix Riemann- Hilbert problem formulated in the plane of the complex spectral parameter ξ. This problem has explicit (x, t) dependence, and it has jumps across {ξ∈C|Imξ^4 = 0}. The relevant jump matrices are explicitely given in terms of the spectral functions {a(ξ), b(ξ)}, {A(ξ), B(ξ)}, and {A(ξ), B(ξ)}, which in turn are defined in terms of the initial data q0(x) = q(x, 0), the bound- ary data g0(t)= q(0, t), g1(t) = qx(0, t), and another boundary values f0(t) = q(L, t), f1(t) = qx(L, t). The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11671255 and 11701510)the Ministry of Economy and Competitiveness of Spain(Grant No.MTM2016-80276-P(AEI/FEDER,EU))the China Postdoctoral Science Foundation(Grant No.2017M621964)
文摘We study a nonintegrable discrete nonlinear SchriSdinger (dNLS) equation with the term of nonlinear nearest-neighbor interaction occurred in nonlinear optical waveguide arrays. By using discrete Fourier transformation, we obtain numerical approximations of stationary and travelling solitary wave solutions of the nonintegrable dNLS equation. The analysis of stability of stationary solitary waves is performed. It is shown that the nonlinear nearest-neighbor interaction term has great influence on the form of solitary wave. The shape of solitary wave is important in the electric field propagating. If we neglect the nonlinear nearest-neighbor interaction term, much important information in the electric field propagating may be missed. Our numerical simulation also demonstrates the difference of chaos phenomenon between the nonintegrable dNLS equation with nonlinear nearest-neighbor interaction and another nonintegrable dNLS equation without the term.
基金Supported by the Teaching Steering Committee Research Project of Higher-Learning Institutions of Ministry of Education(JZW-16-DD-15)
文摘The derivative nonlinear Schrodinger equation, which is extensively applied in plasma physics and nonlinear optics, is analytically studied by Hirota method. Space periodic solutions are determined by means of Hirota's bilinear formalism, and the rogue wave solution is derived as a long-wave limit of the space periodic solution.