期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fabrication and ultraviolet-shielding properties of silica-coated titania-doped ceria nanoparticles
1
作者 陈伟凡 洪建明 +1 位作者 李慧泉 李永绣 《Journal of Rare Earths》 SCIE EI CAS CSCD 2011年第8期810-814,共5页
A series of well-dispersed titania-doped ceria nanoparticles Ce1–xTixO2 were rapidly prepared by a novel salt-assisted solution combustion process using correspondent metal nitrates as oxidizers and ethyl glycol as f... A series of well-dispersed titania-doped ceria nanoparticles Ce1–xTixO2 were rapidly prepared by a novel salt-assisted solution combustion process using correspondent metal nitrates as oxidizers and ethyl glycol as fuel, and then coated with amorphous silica by seeded polymerization using tetraethyl orthoslicate (TEOS). The as-prepared samples were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and ultraviolet-visible light (UV-Vis) diffuse reflectance spectroscopy. The results indicated that compared with the as-prepared pure ceria nanoparticles, the red-shift phenomenon occurred for Ti-doped ceria nanoparticles with Ti incorporation. Meanwhile, the absorption intensity in the UV light region slightly decreased and transmission rate in visible light region was somewhat enhanced. In comparison with the silica-coated CeO2 nanopowders, the silica-coated Ce0.95Ti0.05O2 nanopowders displayed the same absorption intensity in the UV light region, broader UV absorption band and higher transmission rate in visible light region. 展开更多
关键词 ceria nanoparticles titania doping silica coating UV shielding salt-assisted solution combustion synthesis rare earths
原文传递
Characterization and Electrochemical Properties of Nanostructured Zr-Doped Anatase TiO_2 Tubes Synthesized by Sol–Gel Template Route 被引量:1
2
作者 Denis P.Opra Sergey V.Gnedenkov +6 位作者 Sergey L.Sinebryukhov Elena I.Voit Alexander A.Sokolov Evgeny B.Modin Anatoly B.Podgorbunsky Yury V.Sushkov Veniamin V.Zheleznov 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2017年第6期527-534,共8页
A series of nanostructured Zr-doped anatase TiO_2 tubes with the Zr/Ti molar ratio of 0.01, 0.02, 0.03, and0.09 were prepared by a sol–gel technology on a carbon fiber template. The electrochemical performance of Zr-... A series of nanostructured Zr-doped anatase TiO_2 tubes with the Zr/Ti molar ratio of 0.01, 0.02, 0.03, and0.09 were prepared by a sol–gel technology on a carbon fiber template. The electrochemical performance of Zr-doped anatase TiO_2 as anodes for rechargeable lithium batteries was investigated and compared with undoped titania. Tests represented that after 35-fold charge/discharge cycling at C/10 the reversible capacity of Zr-doped titania(Zr/Ti = 0.03) reaches 135 m A h g^(-1), while the capacity of undoped titania(Zr/Ti = 0) yielded only 50 m A h g^(-1). Based on the results of the physicochemical investigation, three reasons of improving electrochemical performance of Zr-doped titania were suggested. According to the scanning electron microscopy and transmission electron microscopy, Zr^(4+) doping induces a decrease in nanoparticle size, which facilitates the Li+diffusion. The Raman investigations show the more open structure of Zr-doped TiO_2 as compared to undoped titania due to changing of the unit cell parameters, that significantly affects on the reversibility of the insertion/extraction process. The electrochemical impedance spectroscopy results indicate that substitution of Zr^(4+) for Ti^(4+) into anatase TiO_2 has favorable effects on the conductivity. 展开更多
关键词 Li-ion batteries Anatase titania Nanostructured materials Sol–gel template process Doping Electrochemical performance
原文传递
Gadolinium-modified titanium oxide materials for photoenergy applications:a review 被引量:4
3
作者 Maciej Zalas 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第6期487-495,共9页
Gadolinium doped titania materials were explored for application in photoenergy production. Incorporation of gadolinium into titania permitted improvement of photocatalytic or photovoltaic performance of the latter. T... Gadolinium doped titania materials were explored for application in photoenergy production. Incorporation of gadolinium into titania permitted improvement of photocatalytic or photovoltaic performance of the latter. This review provided a deep analysis of gadolinium applications in photoenergy processes and devices with the main focus on explanation of gadolinium doping effect on physicochemical properties of titania. 展开更多
关键词 gadolinium doped titania Gd-TiO2 PHOTOCATALYSIS dye-sensitized solar cells photoenergy rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部