以C2H2为碳源,Fe为催化剂,纳米FePO4为原料,采用催化化学气相沉积法(CCVD)合成多孔LiFePO4/C正极材料。经BET、SEM、CHON有机元素分析仪、XRD等手段对复合材料进行结构分析表征。结果表明,该复合材料具有连续贯通的三维导电网络结构,大...以C2H2为碳源,Fe为催化剂,纳米FePO4为原料,采用催化化学气相沉积法(CCVD)合成多孔LiFePO4/C正极材料。经BET、SEM、CHON有机元素分析仪、XRD等手段对复合材料进行结构分析表征。结果表明,该复合材料具有连续贯通的三维导电网络结构,大的比表面积以及多重孔隙的类球形结构,含碳量为4.42%(质量分数),低于传统碳热还原法所制备的材料。电化学测试表明,该材料在0.1、1、5、10 C倍率下,放电比容量分别为147,141,126,110 m Ah·g-1,高倍率充放电性能大大提高,另外,该材料1 C循环80次后,放电比容量基本没有降低,显示了良好的循环稳定性能。展开更多
基金Shandong Young Scientists Award Fund(BS2012NJ010)
文摘以C2H2为碳源,Fe为催化剂,纳米FePO4为原料,采用催化化学气相沉积法(CCVD)合成多孔LiFePO4/C正极材料。经BET、SEM、CHON有机元素分析仪、XRD等手段对复合材料进行结构分析表征。结果表明,该复合材料具有连续贯通的三维导电网络结构,大的比表面积以及多重孔隙的类球形结构,含碳量为4.42%(质量分数),低于传统碳热还原法所制备的材料。电化学测试表明,该材料在0.1、1、5、10 C倍率下,放电比容量分别为147,141,126,110 m Ah·g-1,高倍率充放电性能大大提高,另外,该材料1 C循环80次后,放电比容量基本没有降低,显示了良好的循环稳定性能。