Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids c...Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids composition and concentration exists among various species,showing different colors from nearly white to crimson.The carotenoid biosynthetic pathway and the key carotenogenic genes have been identified in citrus;however,the underlying regulatory mechanisms remain unclear.In this study,among the main species of genus Citrus(primitive,wild,and cultivated),we detected carotenoids in flavedo using High-Performance Liquid Chromatography,and analyzed variations in cis-acting elements in the promoters of key carotenoid pathway genes.Intriguingly,both carotenoid composition and content were generally increased during the evolution of citrus,and the corresponding variations in the promoters were identified,including the gain or loss of critical environmental stress-responsive elements and hormone-responsive elements,which are closely associated with carotenoid enhancement.In addition,pummelo has the most heat-responsive elements,but the Mangshan mandarin does not have this element in the promoters of PSY,which is highly related to their geographical origin and indicate that temperature is a critical environmental signal influencing carotenoid accumulation.Moreover,the abscisic acid-responsive motif was rich in almost all the seven species,but the ethylene-responsive motif was deficient,which demystified the unique phytohormone regulation mechanism of carotenoid accumulation in citrus.Overall,our study provides new insights into the molecular regulatory mechanism of carotenoid enhancement in the evolution of citrus,which can facilitate breeding and cultivation efforts to improve the nutritional quality and esthetic value in citrus and hopefully other fruit crops.展开更多
MicroRNAs (miRNAs) are derived from distinct loci in the genome and play crucial roles in RNA-mediated gene silencing mechanisms that regulate cellular processes during development and stress responses of plants. Th...MicroRNAs (miRNAs) are derived from distinct loci in the genome and play crucial roles in RNA-mediated gene silencing mechanisms that regulate cellular processes during development and stress responses of plants. The miRNAs are approximately 21 nucleotides long and code for the complementary strand to a larger genic mRNA. They are often found within the complementary primary transcript (pri-miRNAs). In the past few years, a growing number of soybean miRNAs have been discovered, however, little is known about the transcriptional regulation of these miRNAs. In this study, promoters and cis-acting elements of soybean miRNAs were analyzed using the genomic data for the first time. A total of 82 miRNAs were located among 122 loci in genome, some were present as double or multiple copies. Five clusters that included ten miRNAs were found in genome, and only one cluster share the same promoter. A total of 191 promoters from 122 loci of the soybean miRNA sequences were found and further analyzed. The results indicated that the conserved soybean miRNA genes had a greater proportion of promoters than that of non-conserved ones, and the distribution of the transcript start sites (TSSs) and TATA-boxes found had different motif styles between conserved and non-conserved miRNA genes. Furthermore, the cis-acting elements 5' of the TSSs were analyzed to obtain potential function and spatiotemporal expression pattern of miRNAs. The data obtained here may lead to the identification of specific sequences upstream of pre-miRNAs and the functional annotation of miRNAs in soybean.展开更多
Dehydration-responsive element-binding (DREB) proteins specifically binding with dehydration-responsive element (DRE) have been identified as a kind of important transcription activator of plants under drought, high s...Dehydration-responsive element-binding (DREB) proteins specifically binding with dehydration-responsive element (DRE) have been identified as a kind of important transcription activator of plants under drought, high salt and cold stress. The conserved amino, acid residues of Val (14th residue) and Glu (19th residue) in AP2/EREBP domain of DREB1A have been identified to be two key points in determining the binding ability of DREB gene with DRE element. Using the yeast one-hybrid system, we isolated one maize DREB gene named maDREB1 by screening cDNA library. Trans-activation experiment in yeast reporter strain demonstrated that maDREB1 protein could function as a DREB transcription factor activating target gene expression by specifically binding to the DRE cis-element. To assess the functional significance of these two residues in maDREB1, the V14 and E19 were substituted individually or doubly by Ala and Asp. Point mutation analysis showed that V14 substitution made significant loss of binding ability with DRE element, while point mutation of E19 had less effect. If the substitution happened simultaneously to these two residues, it would lead to great loss of the ability of binding with DRE element. It suggested that V14 and E19 were both important in protein-DNA interacting in maDREB1, though 14V was more essential. The copy number and expression pattern of maDREB1 was discussed.展开更多
The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and funct...The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and functional analysis. However, little is known about the transcription and regulation of miRNAs themselves. In this study, the transcription start sites (TSSs) for 11 miRNA primary transcripts of soybean from 11 miRNA loci (of 50 loci tested) were cloned by a 5" rapid amplification of cDNA ends (5" RACE) procedure using total RNA from 30-d-old seedlings. The features consistent with a RNA polymerase II mechanism of transcription were found among these miRNA loci. A position weight matrix algorithm was used to identify conserved motifs in miRNA core promoter regions. A canonical TATA box motif was identified upstream of the major start site at 8 (76%) of the mapped miRNA loci. Several cis-acting elements were predicted in the 2 kb 5" to the TSSs. Potential spatial and temporal expression patterns of the miRNAs were found. The target genes for these miRNAs were also predicted and further elucidated for the potential function of the miRNAs. This research provides a molecular basis to explore regulatory mechanisms of miRNA expression, and a way to understand miRNA-mediated regulatory pathways and networks in soybean.展开更多
Abstract Leaves of melon were collected and extracted by the CTAB method for total DNA which was used for PCR amplification, obtaining the gene sequence of cucumisin promoter. The sequence results were processed and a...Abstract Leaves of melon were collected and extracted by the CTAB method for total DNA which was used for PCR amplification, obtaining the gene sequence of cucumisin promoter. The sequence results were processed and analyzed with DNAman, DNAstar and other softwares, and bioinformatic element analysis was performed with PlantCARE and PLACE. The analysis results showed that the cucumisin promoter shared 100%, 99% and 99% homology with AY055805, LN713264 and LN681897, respectively. The promoter sequence contains a variety of c/s-acting elements common in fruit promoters of higher plants such as TATA-Box and CAAT-Box, and light-responsive elements, some of which involved in ABA and VP1 responsiveness and salicylic acid responsiveness. This study provides a scien- tific basis for further research on genetic engineering of fruits.展开更多
The cis-acting regulatory elements, e.g., promoters and ribosome binding sites (RBSs) with various desired properties, are building blocks widely used in synthetic biology for fine tuning gene expression. In the las...The cis-acting regulatory elements, e.g., promoters and ribosome binding sites (RBSs) with various desired properties, are building blocks widely used in synthetic biology for fine tuning gene expression. In the last decade, acquisition of a controllable regulatory element from a random library has been established and applied to control the protein expression and metabolic flux in different chassis cells. However, more rational strategies are still urgently needed to improve the efficiency and reduce the laborious screening and multifaceted characterizations. Building precise computational models that can predict the activity of regulatory elements and quantitatively design elements with desired strength have been demonstrated tremendous potentiality. Here, recent progress on construction of cis- acting regulatory element library and the quantitative predicting models for design of such elements are reviewed and discussed in detail.展开更多
The expression level of cytochrome P450 genes in insects can be induced by plant allelochemicals,which is important for insects to adapt to host plants.Cytochrome P450CYP6B 7has been reported to be involved in pyethro...The expression level of cytochrome P450 genes in insects can be induced by plant allelochemicals,which is important for insects to adapt to host plants.Cytochrome P450CYP6B 7has been reported to be involved in pyethroid insecticide resistance in Heli- coverpa armigera,and its transcription level was induced by some inducers.Currently,the regulatory mechanism of the induced expression of CYP6B7remains unknown,although it is very important for understanding the detoxification mechanism to allelochemicals in host plants.The objective of the present study was to investigate the eis-acting ele- ment in the promoter of CYP6B7 mediating the inducible up-regulation of CYP6B7in H.armigera by 2-tridecanone.The promoter region of CYP6B7was cloned by genome walking technique and analyzed by transient transfeetion assay.Progressive 5'deletion of the promoter region of CYP6B7revealed that the relative luciferase activity of construct -320/+232could be significantly induced by 2-trideeanone.Further stepwise deletion between -320 and -238 bp found that construct -292/+232 could also be significantly induced by 2-tridecanone,but the adjacent construct -256/+232could not,suggesting the essential role of the sequence between -292 and --257 bp for 2-tridecanone induction. Nucleotide mutations between -292 and -281 bp had no influence on the induction ef- fect by 2-tridecanone,but nucleotide mutations between -280 and -257 bp significantly decreased the induction effect.These results demonstrated that the cis-acting element for 2-trideeanone induction was between -280 and -257 bp in the promoter of CYP6B7.展开更多
Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthes...Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the tS-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ's action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study.展开更多
An erythroid-specific nuclear matrix protein (termed ε-NMP_k) in K562 cells, which can specifically bind to the positive stage-specific regulatory element (ε-PRE Ⅱ, -446—-419 bp) upstream of the human ε-globin ge...An erythroid-specific nuclear matrix protein (termed ε-NMP_k) in K562 cells, which can specifically bind to the positive stage-specific regulatory element (ε-PRE Ⅱ, -446—-419 bp) upstream of the human ε-globin gene, has been identified by using gel mobility shift assay.Meanwhile, Southwestern blotting assay showed that the nuclear matrix protein ε-NMP_k in K562,cells may be composed of two polypeptides ( ~ 40 ku). In addition, it is observed in the gel mobility shift assay that the nuclear matrix proteins from K562, HEL and Raji cells can bind to the silencer DNA ( - 392— -177 bp) in the 5’-flanking sequence of human ε-globin gene respectively. However, the shift band K detected in K562 cells is different from shift band H/R in HEL and Raji cells, suggesting that a common nuclear matrix protein may exist in HEL and Raji cells. Results show that the nuclear matrix protein may play an important role in the regulation of the human ε-globin gene expression.展开更多
【目的】构建ERF(ethylene-responsive element binding factor)转录因子基因W17的亚细胞定位载体和原核表达载体,验证W17是否具有核定位功能,阐明W17与GCC、DRE探针的体外结合特性,利用GUS瞬时表达系统分析W17蛋白的体内结合特性和转...【目的】构建ERF(ethylene-responsive element binding factor)转录因子基因W17的亚细胞定位载体和原核表达载体,验证W17是否具有核定位功能,阐明W17与GCC、DRE探针的体外结合特性,利用GUS瞬时表达系统分析W17蛋白的体内结合特性和转录激活功能,初步预测W17在植物胁迫信号传导途径中的作用。【方法】构建W17/163hGFP亚细胞定位载体,基因枪转化洋葱表皮细胞,暗培养24h后共聚焦显微镜下观察。构建W17/pGEX-4T-1原核表达载体,转入大肠杆菌BL21(DE3),IPTG(0.5mmol·L-1,3h)诱导,GST纯化柱纯化,纯化的融合蛋白与[γ-32P]ATP标记的GCC、DRE探针混合进行凝胶阻滞试验。构建GUS瞬时表达系统,通过农杆菌介导转化烟草,X-Gluc染色、酒精脱色后体视显微镜下观察。【结果】W17基因具有核定位功能,纯化的融合蛋白GST/W17能与正常GCC、DRE探针体外特异结合,与突变GCC、DRE探针不结合,在植物体内与GCC特异结合并能激活下游GUS基因表达。【结论】W17通过自身的NLS进入核内行使功能,参与了GCC-box调控的生物胁迫信号传导途径,还可能参与了非生物胁迫(盐胁迫)传导途径。展开更多
基金This research was supported by National Key Research and Development Program of China(Grant No.2018YFD1000200)National Natural Science Foundation of China(Grant nos.31930095 and 31630065)We should thank Prof.Zuoxiong Liu for editing the English language of the manuscript.
文摘Carotenoids are indispensable for both human health and plant survival.Citrus,is one of the fruit crops richest in carotenoid compounds,with approximately 115 kinds of carotenoids;tremendous diversity in carotenoids composition and concentration exists among various species,showing different colors from nearly white to crimson.The carotenoid biosynthetic pathway and the key carotenogenic genes have been identified in citrus;however,the underlying regulatory mechanisms remain unclear.In this study,among the main species of genus Citrus(primitive,wild,and cultivated),we detected carotenoids in flavedo using High-Performance Liquid Chromatography,and analyzed variations in cis-acting elements in the promoters of key carotenoid pathway genes.Intriguingly,both carotenoid composition and content were generally increased during the evolution of citrus,and the corresponding variations in the promoters were identified,including the gain or loss of critical environmental stress-responsive elements and hormone-responsive elements,which are closely associated with carotenoid enhancement.In addition,pummelo has the most heat-responsive elements,but the Mangshan mandarin does not have this element in the promoters of PSY,which is highly related to their geographical origin and indicate that temperature is a critical environmental signal influencing carotenoid accumulation.Moreover,the abscisic acid-responsive motif was rich in almost all the seven species,but the ethylene-responsive motif was deficient,which demystified the unique phytohormone regulation mechanism of carotenoid accumulation in citrus.Overall,our study provides new insights into the molecular regulatory mechanism of carotenoid enhancement in the evolution of citrus,which can facilitate breeding and cultivation efforts to improve the nutritional quality and esthetic value in citrus and hopefully other fruit crops.
基金supported by the National High-Tech R&D Program of China (863 Program,2006AA100104-4)the Project of 948 from Ministryof Agriculture of China (2006-G5)+5 种基金the National Nature Science Foundation of China (30971810,60932008)the National Basic Research Program ofChina (973 Program, 2009CB118400)the Postdoctoral Fund in Heilongjiang Province, China (LBH-Z07228)the Foundation Projects of Northeast Agricultural University, Chinathe Technology Project of Education Ministry of Heilongjiang Province, China(11541025)the Technology Project of Harbin,China (2009RFQXN085)
文摘MicroRNAs (miRNAs) are derived from distinct loci in the genome and play crucial roles in RNA-mediated gene silencing mechanisms that regulate cellular processes during development and stress responses of plants. The miRNAs are approximately 21 nucleotides long and code for the complementary strand to a larger genic mRNA. They are often found within the complementary primary transcript (pri-miRNAs). In the past few years, a growing number of soybean miRNAs have been discovered, however, little is known about the transcriptional regulation of these miRNAs. In this study, promoters and cis-acting elements of soybean miRNAs were analyzed using the genomic data for the first time. A total of 82 miRNAs were located among 122 loci in genome, some were present as double or multiple copies. Five clusters that included ten miRNAs were found in genome, and only one cluster share the same promoter. A total of 191 promoters from 122 loci of the soybean miRNA sequences were found and further analyzed. The results indicated that the conserved soybean miRNA genes had a greater proportion of promoters than that of non-conserved ones, and the distribution of the transcript start sites (TSSs) and TATA-boxes found had different motif styles between conserved and non-conserved miRNA genes. Furthermore, the cis-acting elements 5' of the TSSs were analyzed to obtain potential function and spatiotemporal expression pattern of miRNAs. The data obtained here may lead to the identification of specific sequences upstream of pre-miRNAs and the functional annotation of miRNAs in soybean.
文摘Dehydration-responsive element-binding (DREB) proteins specifically binding with dehydration-responsive element (DRE) have been identified as a kind of important transcription activator of plants under drought, high salt and cold stress. The conserved amino, acid residues of Val (14th residue) and Glu (19th residue) in AP2/EREBP domain of DREB1A have been identified to be two key points in determining the binding ability of DREB gene with DRE element. Using the yeast one-hybrid system, we isolated one maize DREB gene named maDREB1 by screening cDNA library. Trans-activation experiment in yeast reporter strain demonstrated that maDREB1 protein could function as a DREB transcription factor activating target gene expression by specifically binding to the DRE cis-element. To assess the functional significance of these two residues in maDREB1, the V14 and E19 were substituted individually or doubly by Ala and Asp. Point mutation analysis showed that V14 substitution made significant loss of binding ability with DRE element, while point mutation of E19 had less effect. If the substitution happened simultaneously to these two residues, it would lead to great loss of the ability of binding with DRE element. It suggested that V14 and E19 were both important in protein-DNA interacting in maDREB1, though 14V was more essential. The copy number and expression pattern of maDREB1 was discussed.
基金supported by the National High-Tech R&D Program of China (2006AA10Z1F1)the National Core Soybean Genetic Engineering Project, China(2011ZX08004-002)+3 种基金the National Natural Science Foundation of China (60932008, 30971810)the National Basic Research Program of China (2009CB118400)the Ministry of Education Innovation Team of Soybean Molecular Design,Chinathe Innovation Team of the Education Bureau of Heilongjiang Province, China
文摘The importance of microRNA (miRNA) at the post-transcriptional regulation level has recently been recognized in both animals and plants. In recent years, many studies focused on miRNA target identification and functional analysis. However, little is known about the transcription and regulation of miRNAs themselves. In this study, the transcription start sites (TSSs) for 11 miRNA primary transcripts of soybean from 11 miRNA loci (of 50 loci tested) were cloned by a 5" rapid amplification of cDNA ends (5" RACE) procedure using total RNA from 30-d-old seedlings. The features consistent with a RNA polymerase II mechanism of transcription were found among these miRNA loci. A position weight matrix algorithm was used to identify conserved motifs in miRNA core promoter regions. A canonical TATA box motif was identified upstream of the major start site at 8 (76%) of the mapped miRNA loci. Several cis-acting elements were predicted in the 2 kb 5" to the TSSs. Potential spatial and temporal expression patterns of the miRNAs were found. The target genes for these miRNAs were also predicted and further elucidated for the potential function of the miRNAs. This research provides a molecular basis to explore regulatory mechanisms of miRNA expression, and a way to understand miRNA-mediated regulatory pathways and networks in soybean.
基金Supported by Fund of Education Department of Yunnan Province(2013Y251)Characteristic Biological Resource Development and Utilization Key Laboratory Open Fund of Kunming University(GXKJ201612)Fund for Introduction of Doctors(YJL11015)
文摘Abstract Leaves of melon were collected and extracted by the CTAB method for total DNA which was used for PCR amplification, obtaining the gene sequence of cucumisin promoter. The sequence results were processed and analyzed with DNAman, DNAstar and other softwares, and bioinformatic element analysis was performed with PlantCARE and PLACE. The analysis results showed that the cucumisin promoter shared 100%, 99% and 99% homology with AY055805, LN713264 and LN681897, respectively. The promoter sequence contains a variety of c/s-acting elements common in fruit promoters of higher plants such as TATA-Box and CAAT-Box, and light-responsive elements, some of which involved in ABA and VP1 responsiveness and salicylic acid responsiveness. This study provides a scien- tific basis for further research on genetic engineering of fruits.
基金This work was supported by the National Basic Research Program of China (973 Program, grant No. 2012CB721104), the National High Technology Research and Development Program (863 Program, grant No. 2012AA02A701), the National Natural Science Foundation of China (grant Nos. 31170101 and 31301017), and the Natural Science Foundation of Guangdong Province, China (grant No. 2015A030310317).
文摘The cis-acting regulatory elements, e.g., promoters and ribosome binding sites (RBSs) with various desired properties, are building blocks widely used in synthetic biology for fine tuning gene expression. In the last decade, acquisition of a controllable regulatory element from a random library has been established and applied to control the protein expression and metabolic flux in different chassis cells. However, more rational strategies are still urgently needed to improve the efficiency and reduce the laborious screening and multifaceted characterizations. Building precise computational models that can predict the activity of regulatory elements and quantitatively design elements with desired strength have been demonstrated tremendous potentiality. Here, recent progress on construction of cis- acting regulatory element library and the quantitative predicting models for design of such elements are reviewed and discussed in detail.
基金the National Nature Science Foundation of China(30971943).
文摘The expression level of cytochrome P450 genes in insects can be induced by plant allelochemicals,which is important for insects to adapt to host plants.Cytochrome P450CYP6B 7has been reported to be involved in pyethroid insecticide resistance in Heli- coverpa armigera,and its transcription level was induced by some inducers.Currently,the regulatory mechanism of the induced expression of CYP6B7remains unknown,although it is very important for understanding the detoxification mechanism to allelochemicals in host plants.The objective of the present study was to investigate the eis-acting ele- ment in the promoter of CYP6B7 mediating the inducible up-regulation of CYP6B7in H.armigera by 2-tridecanone.The promoter region of CYP6B7was cloned by genome walking technique and analyzed by transient transfeetion assay.Progressive 5'deletion of the promoter region of CYP6B7revealed that the relative luciferase activity of construct -320/+232could be significantly induced by 2-trideeanone.Further stepwise deletion between -320 and -238 bp found that construct -292/+232 could also be significantly induced by 2-tridecanone,but the adjacent construct -256/+232could not,suggesting the essential role of the sequence between -292 and --257 bp for 2-tridecanone induction. Nucleotide mutations between -292 and -281 bp had no influence on the induction ef- fect by 2-tridecanone,but nucleotide mutations between -280 and -257 bp significantly decreased the induction effect.These results demonstrated that the cis-acting element for 2-trideeanone induction was between -280 and -257 bp in the promoter of CYP6B7.
基金supported by the National Key Project of Transgenic Variety Development of China(Nos.2011ZX08009-004 and 2013ZX08009-004)Shanghai Key Laboratory of Bio-Energy Cropsthe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),China
文摘Probenazole (3-allyloxy-l,2-benzisothiazole-1,1-dioxide, PBZ), the active component of Oryzemate, could induce systemic acquired resistance (SAR) in plants through the induction of salicylic acid (SA) biosynthesis. As a widely used chemical inducer, PBZ is a good prospect for establishing a new chemical-inducible system. We first designed artificially synthetic promoters with tandem copies of a single type of cis-element (SARE, JERE, GCC, GST1, HSRE, and W-box) that could mediate the expression of the tS-glucuronidase (GUS) reporter gene in plants upon PBZ treatment. Then we combined different types of elements in order to improve inducibility in the PBZ-inducible system. On the other hand, we were surprised to find that the cis-elements, which are responsive to jasmonic acid (JA) and ethylene, also responded to PBZ, implying that SA, JA, and ethylene pathways also would play important roles in PBZ's action. Further analysis demonstrated that PBZ also induced early events of innate immunity via a signaling pathway in which Ca2+ influx and mitogen-activated protein kinase (MAPK) activity were involved. We constructed synthesized artificial promoters to establish a PBZ chemical-inducible system, and preliminarily explored SA, JA, ethylene, calcium, and MAPK signaling pathways via PBZ-inducible system, which could provide an insight for in-depth study.
基金supported by the National Natural Science Foundation of China(Grant No.39893320)the Foundation of the Chinese Academy of Sciences(Grant No.kJ982-J1-618)
文摘An erythroid-specific nuclear matrix protein (termed ε-NMP_k) in K562 cells, which can specifically bind to the positive stage-specific regulatory element (ε-PRE Ⅱ, -446—-419 bp) upstream of the human ε-globin gene, has been identified by using gel mobility shift assay.Meanwhile, Southwestern blotting assay showed that the nuclear matrix protein ε-NMP_k in K562,cells may be composed of two polypeptides ( ~ 40 ku). In addition, it is observed in the gel mobility shift assay that the nuclear matrix proteins from K562, HEL and Raji cells can bind to the silencer DNA ( - 392— -177 bp) in the 5’-flanking sequence of human ε-globin gene respectively. However, the shift band K detected in K562 cells is different from shift band H/R in HEL and Raji cells, suggesting that a common nuclear matrix protein may exist in HEL and Raji cells. Results show that the nuclear matrix protein may play an important role in the regulation of the human ε-globin gene expression.
文摘【目的】构建ERF(ethylene-responsive element binding factor)转录因子基因W17的亚细胞定位载体和原核表达载体,验证W17是否具有核定位功能,阐明W17与GCC、DRE探针的体外结合特性,利用GUS瞬时表达系统分析W17蛋白的体内结合特性和转录激活功能,初步预测W17在植物胁迫信号传导途径中的作用。【方法】构建W17/163hGFP亚细胞定位载体,基因枪转化洋葱表皮细胞,暗培养24h后共聚焦显微镜下观察。构建W17/pGEX-4T-1原核表达载体,转入大肠杆菌BL21(DE3),IPTG(0.5mmol·L-1,3h)诱导,GST纯化柱纯化,纯化的融合蛋白与[γ-32P]ATP标记的GCC、DRE探针混合进行凝胶阻滞试验。构建GUS瞬时表达系统,通过农杆菌介导转化烟草,X-Gluc染色、酒精脱色后体视显微镜下观察。【结果】W17基因具有核定位功能,纯化的融合蛋白GST/W17能与正常GCC、DRE探针体外特异结合,与突变GCC、DRE探针不结合,在植物体内与GCC特异结合并能激活下游GUS基因表达。【结论】W17通过自身的NLS进入核内行使功能,参与了GCC-box调控的生物胁迫信号传导途径,还可能参与了非生物胁迫(盐胁迫)传导途径。